Hiperbolik uzayda bazı ideal çokyüzlülerin hacimleri üzerine
No Thumbnail Available
Date
2002
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Access Rights
info:eu-repo/semantics/openAccess
Abstract
3-boyutlu hiperbolik uzayda, hacim hesabında sıkça kullanılan Lobachevsky fonksiyonu $JI :Bbb {R} rightarrow Bbb {R}}$ $JI(theta)=-int_0^theta log|2 sin x|dx$ şeklinde tanımlanır. Hiperbolik uzayda düzgün, ideal dörtyüzlünün hacminin $3JI (frac{pi}{3})$ olduğu ve tüm hiperbolik dörtyüzlüler arasında maksimum hacimli dörtyüzlünün düzgün, ideal dörtyüzlü olduğu Lobachevsky'den beri bilinmektedir. (Milnor, 1982; Ratcliffe, 1994). İdeal düzgün altıyüzlü, sekizyüzlü ve yirmiyüzlünün hacimleri (Deniz, 2001)'de hesaplanmıştır. Bu çalışmada bazı hiperbolik çokyüzlülerin (altıyüzlü, sekizyüzlü, yirmiyüzlü) hacimlerinin maksimum olabilmesi için düzgün ve ideal olmaları gerektiği gösterilmiştir.
Description
Keywords
Journal or Series
Anadolu Üniversitesi Bilim ve Teknoloji Dergisi :A-Uygulamalı Bilimler ve Mühendislik
WoS Q Value
Scopus Q Value
Volume
3
Issue
3