Hiperbolik uzayda bazı ideal çokyüzlülerin hacimleri üzerine
Küçük Resim Yok
Tarih
2002
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
3-boyutlu hiperbolik uzayda, hacim hesabında sıkça kullanılan Lobachevsky fonksiyonu $JI :Bbb {R} rightarrow Bbb {R}}$ $JI(theta)=-int_0^theta log|2 sin x|dx$ şeklinde tanımlanır. Hiperbolik uzayda düzgün, ideal dörtyüzlünün hacminin $3JI (frac{pi}{3})$ olduğu ve tüm hiperbolik dörtyüzlüler arasında maksimum hacimli dörtyüzlünün düzgün, ideal dörtyüzlü olduğu Lobachevsky'den beri bilinmektedir. (Milnor, 1982; Ratcliffe, 1994). İdeal düzgün altıyüzlü, sekizyüzlü ve yirmiyüzlünün hacimleri (Deniz, 2001)'de hesaplanmıştır. Bu çalışmada bazı hiperbolik çokyüzlülerin (altıyüzlü, sekizyüzlü, yirmiyüzlü) hacimlerinin maksimum olabilmesi için düzgün ve ideal olmaları gerektiği gösterilmiştir.
Açıklama
Anahtar Kelimeler
Kaynak
Anadolu Üniversitesi Bilim ve Teknoloji Dergisi :A-Uygulamalı Bilimler ve Mühendislik
WoS Q Değeri
Scopus Q Değeri
Cilt
3
Sayı
3