Choosing from an incomplete tournament
Yükleniyor...
Tarih
2008
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
İstanbul Bilgi Üniversitesi
Erişim Hakkı
Attribution-NonCommercial-NoDerivs 3.0 United States
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
Özet
Eksik turnuvalar sonlu kümeler üzerindeki asimetrik ikili bagıntılardır. Tamamlanmıs asimetrik ikili bağıntı olan turnuvalar ve turnuva çözümleri literatürde kapsamlı bir sekilde incelenmistir. Bu çalismada eksik turnuvaların yapısı incelenmis, ve üç önemli turnuva çözümü- Schwartz (1972), Miller (1977) tepe döngüsü; Fishburn (1977), Miller (1977), Miller (1980) kaplanmamıs elemanlar kümesi; Copeland (1951) çözümü- eksik turnuvalara adapte edilmistir. Tepe döngüsü karakterize edilmis ve kaplanmamıs elemanlar kümesi ile Copeland çözümünün karakterizasyonu incelenmistir.
By incomplete tournaments, we mean asymmetric binary relations over finite sets. Tournaments, which are complete and asymmetric binary relations, and tournament solutions are exhaustively investigated in the literature. We introduce the structure of incomplete tournaments, and we adapt three solution concepts -top cycle of Schwartz (1972), Miller (1977); uncovered set of Fishburn (1977), Miller (1977) and Miller (1980), Copeland solution of Copeland (1951)- established for tournaments to incomplete tournaments. We axiomatize top-cycle, and investigate the characterization of the uncovered set and the Copeland solution.
By incomplete tournaments, we mean asymmetric binary relations over finite sets. Tournaments, which are complete and asymmetric binary relations, and tournament solutions are exhaustively investigated in the literature. We introduce the structure of incomplete tournaments, and we adapt three solution concepts -top cycle of Schwartz (1972), Miller (1977); uncovered set of Fishburn (1977), Miller (1977) and Miller (1980), Copeland solution of Copeland (1951)- established for tournaments to incomplete tournaments. We axiomatize top-cycle, and investigate the characterization of the uncovered set and the Copeland solution.