Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Hakkında
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Oztoprak, Figen" seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A family of second-order methods for convex -regularized optimization
    (Springer Heidelberg, 2016) Byrd, Richard H.; Chin, Gillian M.; Nocedal, Jorge; Oztoprak, Figen
    This paper is concerned with the minimization of an objective that is the sum of a convex function f and an regularization term. Our interest is in active-set methods that incorporate second-order information about the function f to accelerate convergence. We describe a semismooth Newton framework that can be used to generate a variety of second-order methods, including block active set methods, orthant-based methods and a second-order iterative soft-thresholding method. The paper proposes a new active set method that performs multiple changes in the active manifold estimate at every iteration, and employs a mechanism for correcting these estimates, when needed. This corrective mechanism is also evaluated in an orthant-based method. Numerical tests comparing the performance of three active set methods are presented.
  • Küçük Resim Yok
    Öğe
    A framework for parallel second order incremental optimization algorithms for solving partially separable problems
    (Springer, 2019) Kaya, Kamer; Oztoprak, Figen; Birbil, S. Ilker; Cemgil, A. Taylan; Simsekli, Umut; Kuru, Nurdan; Koptagel, Hazal
    We propose Hessian Approximated Multiple Subsets Iteration (HAMSI), which is a generic second order incremental algorithm for solving large-scale partially separable convex and nonconvex optimization problems. The algorithm is based on a local quadratic approximation, and hence, allows incorporating curvature information to speed-up the convergence. HAMSI is inherently parallel and it scales nicely with the number of processors. We prove the convergence properties of our algorithm when the subset selection step is deterministic. Combined with techniques for effectively utilizing modern parallel computer architectures, we illustrate that a particular implementation of the proposed method based on L-BFGS updates converges more rapidly than a parallel gradient descent when both methods are used to solve large-scale matrix factorization problems. This performance gain comes only at the expense of using memory that scales linearly with the total size of the optimization variables. We conclude that HAMSI may be considered as a viable alternative in many large scale problems, where first order methods based on variants of gradient descent are applicable.
  • Küçük Resim Yok
    Öğe
    An inexact successive quadratic approximation method for L-1 regularized optimization
    (Springer Heidelberg, 2016) Byrd, Richard H.; Nocedal, Jorge; Oztoprak, Figen
    We study a Newton-like method for the minimization of an objective function that is the sum of a smooth function and an regularization term. This method, which is sometimes referred to in the literature as a proximal Newton method, computes a step by minimizing a piecewise quadratic model of the objective function . In order to make this approach efficient in practice, it is imperative to perform this inner minimization inexactly. In this paper, we give inexactness conditions that guarantee global convergence and that can be used to control the local rate of convergence of the iteration. Our inexactness conditions are based on a semi-smooth function that represents a (continuous) measure of the optimality conditions of the problem, and that embodies the soft-thresholding iteration. We give careful consideration to the algorithm employed for the inner minimization, and report numerical results on two test sets originating in machine learning.
  • Küçük Resim Yok
    Öğe
    On the improvement of a scalable sparse direct solver for unsymmetrical linear equations
    (Springer, 2017) Celebi, M. Serdar; Duran, Ahmet; Oztoprak, Figen; Tuncel, Mehmet; Akaydin, Bora
    This paper focuses on the application level improvements in a sparse direct solver specifically used for large-scale unsymmetrical linear equations resulting from unstructured mesh discretization of coupled elliptic/hyperbolic PDEs. Existing sparse direct solvers are designed for distributed server systems taking advantage of both distributed memory and processing units. We conducted extensive numerical experiments with three state-of-the-art direct linear solvers that can work on distributed-memory parallel architectures; namely, MUMPS(MUMPS solver website, http://graal.ens-lyon.fr/MUMPS), WSMP (Technical Report TR RC-21886, IBM, Watson Research Center, Yorktown Heights, 2000), and SUPERLU_DIST (ACM Trans Math Softw 29(2): 110-140, 2003). The performance of these solvers was analyzed in detail, using advanced analysis tools such as Tuning and Analysis Utilities (TAU) and Performance Application Programming Interface (PAPI). The performance is evaluated with respect to robustness, speed, scalability, and efficiency in CPU and memory usage. We have determined application level issues that we believe they can improve the performance of a distributed-shared memory hybrid variant of this solver, which is proposed as an alternative solver [SuperLU_MCDT (Many-Core Distributed)] in this paper. The new solver utilizing the MPI/OpenMP hybrid programming is specifically tuned to handle large unsymmetrical systems arising in reservoir simulations so that higher performance and better scalability can be achieved for a large distributed computing system with many nodes of multicore processors. Two main tasks are accomplished during this study: (i) comparisons of public domain solver algorithms; existing state-of-the-art direct sparse linear system solvers are investigated and their performance and weaknesses based on test cases are analyzed, (ii) improvement of direct sparse solver algorithm (SuperLU_MCDT) for many-core distributed systems is achieved. We provided results of numerical tests that were run on up to 16,384 cores, and used many sets of test matrices for reservoir simulations with unstructured meshes. The numerical results showed that SuperLU_MCDT can outperform SuperLU_DIST 3.3 in terms of both speed and robustness.

| İstanbul Bilgi Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Eski Silahtarağa Elektrik Santralı, Eyüpsultan, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Hakkında
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim