Robust Delay-Dependent H? Control for Uncertain Structural Systems With Actuator Delay

dc.authoridGuclu, Rahmi/0000-0003-0996-7923|Parlakci, Alpaslan/0000-0002-4702-3563|Yazici, Hakan/0000-0001-6859-9548|Kucukdemiral, Ibrahim Beklan/0000-0003-0174-5680
dc.authorwosidGuclu, Rahmi/AAZ-8112-2020
dc.authorwosidParlakci, Alpaslan/U-1325-2018
dc.contributor.authorYazici, Hakan
dc.contributor.authorGuclu, Rahmi
dc.contributor.authorKucukdemiral, Ibrahim B.
dc.contributor.authorParlakci, M. N. Alpaslan
dc.date.accessioned2024-07-18T20:47:36Z
dc.date.available2024-07-18T20:47:36Z
dc.date.issued2012
dc.departmentİstanbul Bilgi Üniversitesien_US
dc.description.abstractThis paper is concerned with the design of a robust, state-feedback, delay-dependent H-infinity controller for an active vibration control of seismic-excited structural systems having actuator delay, norm bounded uncertainties, and L-2 disturbances. The norm bounded uncertainties are assumed to exist in variations of structural stiffness and damping coefficients. Based on the selection of Lyapunov-Krasovskii functional, first a bounded real lemma (BRL) is obtained in terms of linear matrix inequalities (LMIs) such that the nominal, time-delay system is guaranteed to be globally asymptotically stable with minimum allowable disturbance attenuation level. Extending BRL, sufficient delay-dependent criteria are developed for a stabilizing H-infinity controller synthesis involving a matrix inequality for which a nonlinear optimization algorithm with LMIs is proposed to get feasible solution to the problem. Moreover, for the case of existence of norm-bounded uncertainties, both the BRL and H-infinity stabilization criteria are easily extended by employing a well-known bounding technique. Then, a cone complementary algorithm is also utilized to solve the nonconvex optimization problem. By use of the proposed method, a suboptimal controller with maximum allowable delay bound, uncertainty bound and minimum allowable disturbance attenuation level can be easily obtained by solving the proposed convex optimization technique. A four-degree-of-freedom uncertain structural system subject to seismic excitations is used to illustrate the effectiveness of the approach through simulations. Simulation results, obtained by using real time-history data of Kobe and Kocaeli earthquakes show that the proposed controller is very effective in reducing vibration amplitudes of storeys and guarantees stability at maximum actuator delay and parametric uncertainty bound. [DOI: 10.1115/1.4005500]en_US
dc.identifier.doi10.1115/1.4005500
dc.identifier.issn0022-0434
dc.identifier.issn1528-9028
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-84860433180en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.1115/1.4005500
dc.identifier.urihttps://hdl.handle.net/11411/7865
dc.identifier.volume134en_US
dc.identifier.wosWOS:000303256200013en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherAsmeen_US
dc.relation.ispartofJournal of Dynamic Systems Measurement and Control-Transactions of The Asmeen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectH-İnfinity Controlen_US
dc.subjectNorm Bounded Uncertaintiesen_US
dc.subjectActuator Delayen_US
dc.subjectLinear Matrix İnequalitiesen_US
dc.subjectVibrationen_US
dc.subjectStructureen_US
dc.subjectActive Vibration Controlen_US
dc.subjectFuzzy-Logic Controlen_US
dc.subjectTime-Delayen_US
dc.subjectStability-Criteriaen_US
dc.subjectStabilizationen_US
dc.subjectAtmden_US
dc.titleRobust Delay-Dependent H? Control for Uncertain Structural Systems With Actuator Delay
dc.typeArticle

Dosyalar