Intelligent Classification-Based Methods in Customer Profitability Modeling

dc.authoridDUMAN, EKREM/0000-0001-5176-6186
dc.authorwosidDUMAN, EKREM/GXN-3001-2022
dc.contributor.authorEkinci, Yeliz
dc.contributor.authorDuman, Ekrem
dc.coverage.doi10.1007/978-3-319-17906-3
dc.date.accessioned2024-07-18T20:40:06Z
dc.date.available2024-07-18T20:40:06Z
dc.date.issued2015
dc.departmentİstanbul Bilgi Üniversitesien_US
dc.description.abstractThe expected profits from customers are important informations for the companies in giving acquisition/retention decisions and developing different strategies for different customer segments. Most of these decisions can be made through intelligent Customer Relationship Management (CRM) systems. We suggest embedding an intelligent Customer Profitability (CP) model in the CRM systems, in order to automatize the decisions that are based on CP values. Since one of the aims of CP analysis is to find out the most/least profitable customers, this paper proposes to evaluate the performances of the CP models based on the correct classification of customers into different profitability segments. Our study proposes predicting the segments of the customers directly with classification-based models and comparing the results with the traditional approach (value-based models) results. In this study, cost sensitive classification based models are used to predict the customer segments since misclassification of some segments are more important than others. For this aim, Classification and regression trees, Logistic regression and Chi-squared automatic interaction detector techniques are utilized. In order to compare the performance of the models, new performance measures are promoted, which are hit, capture and lift rates. It is seen that classification-based models outperform the previously used value-based models, which shows the proposed framework works out well.en_US
dc.identifier.doi10.1007/978-3-319-17906-3_20
dc.identifier.endpage527en_US
dc.identifier.isbn978-3-319-17906-3
dc.identifier.isbn978-3-319-17905-6
dc.identifier.issn1868-4394
dc.identifier.issn1868-4408
dc.identifier.scopus2-s2.0-84929088473en_US
dc.identifier.scopusqualityQ4en_US
dc.identifier.startpage503en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-319-17906-3_20
dc.identifier.urihttps://hdl.handle.net/11411/6977
dc.identifier.volume87en_US
dc.identifier.wosWOS:000374493600021en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer-Verlag Berlinen_US
dc.relation.ispartofIntelligent Techniques in Engineering Management: Theory and Applicationsen_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCustomer Profitabilityen_US
dc.subjectCustomer Lifetime Valueen_US
dc.subjectRegressionen_US
dc.subjectClassificationen_US
dc.subjectFeature-Selectionen_US
dc.subjectSegmentationen_US
dc.subjectSystemen_US
dc.subjectClassifiersen_US
dc.subjectManagementen_US
dc.titleIntelligent Classification-Based Methods in Customer Profitability Modelingen_US
dc.typeBook Chapteren_US

Dosyalar