Air-Water Two-Phase Flow Dynamics Analysis in Complex U-Bend Systems through Numerical Modeling

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Mdpi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

This study aims to provide insights into the intricate interactions between gas and liquid phases within flow components, which are pivotal in various industrial sectors such as nuclear reactors, oil and gas pipelines, and thermal management systems. Employing the Eulerian-Eulerian approach, our computational model incorporates interphase relations, including drag and non-drag forces, to analyze phase distribution and velocities within a complex U-bend system. Comprising two horizontal-to-vertical bends and one vertical 180-degree elbow, the U-bend system's behavior concerning bend geometry and airflow rates is scrutinized, highlighting their significant impact on multiphase flow dynamics. The study not only presents a detailed exposition of the numerical modeling techniques tailored for this complex geometry but also discusses the results obtained. Detailed analyses of local void fraction and phase velocities for each phase are provided. Furthermore, experimental validation enhances the reliability of our computational findings, with close agreement observed between computational and experimental results. Overall, the study underscores the efficacy of the Eulerian approach with interphase relations in capturing the complex behavior of the multiphase flow in U-bend systems, offering valuable insights for hydraulic system design and optimization in industrial applications.

Açıklama

Anahtar Kelimeler

Air-Water Two Phase Flows, U-Bend, Eulerian-Eulerian Approach, İnterphase Relations, Void-Fraction, Pressure-Drop, Prediction, Fraction, Pipe

Kaynak

Computation

WoS Q Değeri

N/A

Scopus Q Değeri

Q2

Cilt

12

Sayı

4

Künye