Identification of hadronic tau lepton decays using a deep neural network
dc.contributor.author | Yetkin, Elif Aslı | |
dc.date.accessioned | 2022-10-17T09:30:29Z | |
dc.date.available | 2022-10-17T09:30:29Z | |
dc.date.issued | 2022-07-01 | |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Enerji Sistemleri Mühendisliği Bölümü | en_US |
dc.description.abstract | Abstract: A new algorithm is presented to discriminate reconstructed hadronic decays of tau leptons (? h) that originate from genuine tau leptons in the CMS detector against ? h candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a ? h candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine ? h to pass the discriminator against jets increases by 10-30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient ? h reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved ? h reconstruction method are validated with LHC proton-proton collision data at s = 13 TeV. © 2022 CERN. | en_US |
dc.fullTextLevel | Full Text | en_US |
dc.identifier.doi | 10.1088/1748-0221/17/07/P07023 | en_US |
dc.identifier.issn | 1748-0221 | |
dc.identifier.scopus | 2-s2.0-85135918744 | en_US |
dc.identifier.uri | https://hdl.handle.net/11411/4581 | |
dc.identifier.uri | https://doi.org/10.1088/1748-0221/17/07/P07023 | |
dc.identifier.wos | WOS:000867442500009 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.issue | 7 | en_US |
dc.language.iso | en | en_US |
dc.national | International | en_US |
dc.numberofauthors | 100+ | en_US |
dc.publisher | Institute of Physics | en_US |
dc.relation.ispartof | Journal of Instrumentation | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | calibration and fitting methods | en_US |
dc.subject | cluster finding | en_US |
dc.subject | Large detector systems for particle and astroparticle physics | en_US |
dc.subject | Particle identification methods | en_US |
dc.title | Identification of hadronic tau lepton decays using a deep neural network | en_US |
dc.type | Article | en_US |
dc.volume | 17 | en_US |