Identification of hadronic tau lepton decays using a deep neural network

dc.contributor.authorYetkin, Elif Aslı
dc.date.accessioned2022-10-17T09:30:29Z
dc.date.available2022-10-17T09:30:29Z
dc.date.issued2022-07-01
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Enerji Sistemleri Mühendisliği Bölümüen_US
dc.description.abstractAbstract: A new algorithm is presented to discriminate reconstructed hadronic decays of tau leptons (? h) that originate from genuine tau leptons in the CMS detector against ? h candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a ? h candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine ? h to pass the discriminator against jets increases by 10-30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient ? h reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved ? h reconstruction method are validated with LHC proton-proton collision data at s = 13 TeV. © 2022 CERN.en_US
dc.fullTextLevelFull Texten_US
dc.identifier.doi10.1088/1748-0221/17/07/P07023en_US
dc.identifier.issn1748-0221
dc.identifier.scopus2-s2.0-85135918744en_US
dc.identifier.urihttps://hdl.handle.net/11411/4581
dc.identifier.urihttps://doi.org/10.1088/1748-0221/17/07/P07023
dc.identifier.wosWOS:000867442500009en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.issue7en_US
dc.language.isoenen_US
dc.nationalInternationalen_US
dc.numberofauthors100+en_US
dc.publisherInstitute of Physicsen_US
dc.relation.ispartofJournal of Instrumentationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectcalibration and fitting methodsen_US
dc.subjectcluster findingen_US
dc.subjectLarge detector systems for particle and astroparticle physicsen_US
dc.subjectParticle identification methodsen_US
dc.titleIdentification of hadronic tau lepton decays using a deep neural networken_US
dc.typeArticleen_US
dc.volume17en_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Yetkin2022.pdf
Boyut:
1.74 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.71 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: