Using remote sensing technologies for wind turbine/farm health monitoring

dc.authorscopusid56284278300
dc.authorscopusid7004338263
dc.contributor.authorOzbek, M.
dc.contributor.authorRixen, D.J.
dc.date.accessioned2024-07-18T20:16:45Z
dc.date.available2024-07-18T20:16:45Z
dc.date.issued2015
dc.description.abstractEfficient use of contemporary measurement systems (accelerometers, piezoelectric or fiber-optic strain gauges) in structural health monitoring of wind turbines is mainly limited due to high sensor installation costs, practical limitations in placing these sensors on existing structures, low spatial resolution, and similar disadvantages caused by the complicated nature of wind loading and the turbine structure. The factors affecting the performance of these sensors such as sensitivity to lightning, electromagnetic fields, humidity and temperature variations, and the corresponding error compensation methods are still being investigated. Similarly, additional long-term durability tests are required to determine whether the bonding between the sensor and composite blade material deteriorates over time due to repetitive loading and severe environmental factors or not. In this work, two optical measurement techniques (photogrammetry and laser interferometry), which do not require any sensors to be installed on the structure, are introduced as promising and versatile alternatives for measuring the vibration response of wind turbines. By using LDV (laser Doppler vibrometer), the dynamic behavior of the turbine at parked condition can be measured with a very high accuracy (in micron level). Similarly, photogrammetry enables the in-operation vibration response of the turbine to be measured with an average accuracy of 25 mm from a measurement distance of 220 m. Considering the fact that during rotation peak-to-peak blade deformations can be as high as 1,000 mm, this accuracy can be considered as quite high and still be improved further. © 2015 Springer International Publishing Switzerland. All rights reserved.en_US
dc.identifier.doi10.1007/978-3-319-17031-2_69
dc.identifier.endpage1056en_US
dc.identifier.isbn9783319170312
dc.identifier.isbn9783319170305
dc.identifier.scopus2-s2.0-84956525765en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage1045en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-319-17031-2_69
dc.identifier.urihttps://hdl.handle.net/11411/6241
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer International Publishingen_US
dc.relation.ispartofProgress in Clean Energy, Volume 2: Novel Systems and Applicationsen_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLaser İnterferometryen_US
dc.subjectPhotogrammetryen_US
dc.subjectRemote Sensing Technologiesen_US
dc.subjectStructural Health Monitoringen_US
dc.subjectWind Turbineen_US
dc.subjectDurabilityen_US
dc.subjectElectromagnetic Fieldsen_US
dc.subjectError Compensationen_US
dc.subjectFiber Optic Sensorsen_US
dc.subjectInterferometryen_US
dc.subjectLaser Doppler Velocimetersen_US
dc.subjectLaser İnterferometryen_US
dc.subjectOptical Data Processingen_US
dc.subjectPhotogrammetryen_US
dc.subjectRemote Sensingen_US
dc.subjectSensitivity Analysisen_US
dc.subjectTurbomachine Bladesen_US
dc.subjectWind Turbinesen_US
dc.subjectEnvironmental Factorsen_US
dc.subjectError Compensation Methodsen_US
dc.subjectHumidity And Temperaturesen_US
dc.subjectLdv (Laser Doppler Vibrometer)en_US
dc.subjectLong Term Durabilityen_US
dc.subjectOptical Measurement Techniquesen_US
dc.subjectRemote Sensing Technologyen_US
dc.subjectSensor İnstallationen_US
dc.subjectStructural Health Monitoringen_US
dc.titleUsing remote sensing technologies for wind turbine/farm health monitoringen_US
dc.typeBook Chapteren_US

Dosyalar