On Finsler Warped Product Metrics with Special Curvatures Properties

dc.contributor.authorGabrani, Mehran
dc.contributor.authorRezaei, Bahman
dc.contributor.authorSevim, Esra Sengelen
dc.date.accessioned2024-07-18T20:42:28Z
dc.date.available2024-07-18T20:42:28Z
dc.date.issued2022
dc.departmentİstanbul Bilgi Üniversitesien_US
dc.description.abstractIn this paper, we study a class of Finsler metrics called Finsler warped product metrics. We prove that every Finsler warped product metric is of isotropic E-curvature if and only if it is of isotropic S-curvature. Moreover, we prove that if the metric is of Douglas type and has isotropic S-curvature, then it must be Randers metric or Berwald metric.en_US
dc.identifier.doi10.1007/s40840-021-01234-4
dc.identifier.endpage989en_US
dc.identifier.issn0126-6705
dc.identifier.issn2180-4206
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85123114260en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage973en_US
dc.identifier.urihttps://doi.org/10.1007/s40840-021-01234-4
dc.identifier.urihttps://hdl.handle.net/11411/7276
dc.identifier.volume45en_US
dc.identifier.wosWOS:000742836500002en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringernatureen_US
dc.relation.ispartofBulletin of The Malaysian Mathematical Sciences Societyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFinsler Metricen_US
dc.subjectWarped Producten_US
dc.subjectIsotropic S-Curvatureen_US
dc.subjectRanders Metricsen_US
dc.subjectBeta)-Metricsen_US
dc.subject(Alphaen_US
dc.titleOn Finsler Warped Product Metrics with Special Curvatures Properties
dc.typeArticle

Dosyalar