Anomaly Detection With Multivariate K-sigma Score Using Monte Carlo

dc.contributor.authorCetin, Uzay
dc.contributor.authorTasgin, Mursel
dc.date.accessioned2024-07-18T20:47:28Z
dc.date.available2024-07-18T20:47:28Z
dc.date.issued2020
dc.departmentİstanbul Bilgi Üniversitesien_US
dc.description5th International Conference on Computer Science and Engineering (UBMK) -- SEP 09-11, 2020 -- Diyarbakir, TURKEYen_US
dc.description.abstractWe propose a new unsupervised anomaly detection technique based on Monte Carlo sampling. We draw samples from a Gaussian probability distribution that fits to the given data and use these samples to form a Monte Carlo estimate of an anomaly score. Many of the current anomaly detection algorithms detect anomalies without producing any anomaly scores. This may lead to confusion over the scaling of the anomaly situation as well as identifying the underlying cause for anomalies in explainable conditions. The proposed algorithm is a multi-variate unsupervised technique, which also provides anomaly scores that allows measuring the strength of outlierness of a multi-variate data point. Our experiments show that the proposed algorithm achieves better results compared to the state-of-the-art anomaly detection algorithms with clustering-based approaches and isolation forest.en_US
dc.description.sponsorshipIEEE Turkey Sect,Istanbul Teknik Univ,Gazi Univ,Atilim Univ,Dicle Univ,Turkiye Bilisim Vakfi,Kocaeli Univen_US
dc.description.sponsorshipTubitak Teydeb programen_US
dc.description.sponsorshipThis work is accomplished as a research project under the research and development (R&D) department at KKB Kredi Kayit Burosu, as a part of the efforts in MPP-62 Proactive Unsupervised Anomaly Detection on System Data project that is supported by Tubitak Teydeb program. We thank our dedicated R&D team for their invaluable contributions to this work.en_US
dc.identifier.doi10.1109/ubmk50275.2020.9219482
dc.identifier.endpage98en_US
dc.identifier.isbn978-1-7281-7565-2
dc.identifier.scopus2-s2.0-85095717525en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage94en_US
dc.identifier.urihttps://doi.org/10.1109/ubmk50275.2020.9219482
dc.identifier.urihttps://hdl.handle.net/11411/7803
dc.identifier.wosWOS:000629055500018en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2020 5th International Conference on Computer Science and Engineering (Ubmk)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnomaly Detectionen_US
dc.subjectClusteringen_US
dc.subjectMonte Carlo Samplingen_US
dc.subjectIsolation Foresten_US
dc.subjectMachine Learningen_US
dc.titleAnomaly Detection With Multivariate K-sigma Score Using Monte Carlo
dc.typeConference Object

Dosyalar