Minimum H-decompositions of graphs: Edge-critical case

dc.WoS.categoriesMathematicsen_US
dc.authorid0000-0001-6105-1694en_US
dc.authorid0000-0002-3091-3025en_US
dc.contributor.authorÖzkahya, Lale
dc.contributor.authorPerson, Yury
dc.date.accessioned2021-02-23T13:15:42Z
dc.date.available2021-02-23T13:15:42Z
dc.date.issued2012-05
dc.description.abstractFor a given graph H let phi(H)(n) be the maximum number of parts that are needed to partition the edge set of any graph on n vertices such that every member of the partition is either a single edge or it is isomorphic to H. Pikhurko and Sousa conjectured that phi(H)(n) = ex(n, H) for chi (H) >= 3 and all sufficiently large n, where ex(n, H) denotes the maximum size of a graph on n vertices not containing H as a subgraph. In this article, their conjecture is verified for all edge-critical graphs. Furthermore, it is shown that the graphs maximizing phi(H) (n) are (chi(H) - 1)-partite Turan graphs. (C) 2011 Elsevier Inc. All rights reserved.en_US
dc.fullTextLevelFull Texten_US
dc.identifier.doi10.1016/j.jctb.2011.10.004en_US
dc.identifier.issn0095-8956
dc.identifier.scopus2-s2.0-84857627648en_US
dc.identifier.urihttps://hdl.handle.net/11411/3275
dc.identifier.urihttps://doi.org/10.1016/j.jctb.2011.10.004
dc.identifier.wosWOS:000301619300009en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.issue3en_US
dc.language.isoenen_US
dc.nationalInternationalen_US
dc.numberofauthors2en_US
dc.pages715-725en_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.relation.ispartofJournal of Combinatorial Theory Series Ben_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGraph decompositionen_US
dc.subjectEdge-criticalen_US
dc.subjectTuran graphen_US
dc.subjectStability approachen_US
dc.titleMinimum H-decompositions of graphs: Edge-critical caseen_US
dc.typeArticleen_US
dc.volume102en_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Ozkahya 2012.pdf
Boyut:
183.43 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.71 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: