Homogeneity in relatively free groups

dc.contributor.authorBelegradek, Oleg
dc.date.accessioned2024-07-18T20:40:24Z
dc.date.available2024-07-18T20:40:24Z
dc.date.issued2012
dc.departmentİstanbul Bilgi Üniversitesien_US
dc.description.abstractWe prove that any torsion-free, residually finite relatively free group of infinite rank is not -homogeneous. This generalizes Sklinos' result that a free group of infinite rank is not -homogeneous, and, in particular, gives a new simple proof of that result.en_US
dc.identifier.doi10.1007/s00153-012-0298-3
dc.identifier.endpage787en_US
dc.identifier.issn0933-5846
dc.identifier.issn1432-0665
dc.identifier.issue7.Ağuen_US
dc.identifier.scopus2-s2.0-84867059638en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage781en_US
dc.identifier.urihttps://doi.org/10.1007/s00153-012-0298-3
dc.identifier.urihttps://hdl.handle.net/11411/7102
dc.identifier.volume51en_US
dc.identifier.wosWOS:000309348800008en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofArchive for Mathematical Logicen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGroup Varietyen_US
dc.subjectRelatively Free Groupen_US
dc.subjectHomogeneous Structureen_US
dc.subjectElementary Theoryen_US
dc.titleHomogeneity in relatively free groupsen_US
dc.typeArticleen_US

Dosyalar