Homogeneity in relatively free groups
dc.contributor.author | Belegradek, Oleg | |
dc.date.accessioned | 2024-07-18T20:40:24Z | |
dc.date.available | 2024-07-18T20:40:24Z | |
dc.date.issued | 2012 | |
dc.department | İstanbul Bilgi Üniversitesi | en_US |
dc.description.abstract | We prove that any torsion-free, residually finite relatively free group of infinite rank is not -homogeneous. This generalizes Sklinos' result that a free group of infinite rank is not -homogeneous, and, in particular, gives a new simple proof of that result. | en_US |
dc.identifier.doi | 10.1007/s00153-012-0298-3 | |
dc.identifier.endpage | 787 | en_US |
dc.identifier.issn | 0933-5846 | |
dc.identifier.issn | 1432-0665 | |
dc.identifier.issue | 7.Ağu | en_US |
dc.identifier.scopus | 2-s2.0-84867059638 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 781 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00153-012-0298-3 | |
dc.identifier.uri | https://hdl.handle.net/11411/7102 | |
dc.identifier.volume | 51 | en_US |
dc.identifier.wos | WOS:000309348800008 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Heidelberg | en_US |
dc.relation.ispartof | Archive for Mathematical Logic | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Group Variety | en_US |
dc.subject | Relatively Free Group | en_US |
dc.subject | Homogeneous Structure | en_US |
dc.subject | Elementary Theory | en_US |
dc.title | Homogeneity in relatively free groups | en_US |
dc.type | Article | en_US |