The schur-horn theorem for operators with finite spectrum
dc.contributor.author | Ravichandran, Mohan | |
dc.date.accessioned | 2021-06-16T07:31:20Z | |
dc.date.available | 2021-06-16T07:31:20Z | |
dc.date.issued | 2014-10-01 | |
dc.description.abstract | The carpenter problem in the context of II1 factors, formulated by Kadison, asks: Let A? M be a masa in a type II1 factor and let E be the normal conditional expectation fromMonto A. Then, is it true that for every positive contraction A in A, there is a projection P inMsuch that E(P) = A? In this note, we show that this is true if A has finite spectrum. We will then use this result to prove an exact Schur-Horn theorem for positive operators with finite spectrum in type II1 factors and an approximate Schur-Horn theorem for general positive operators in type II1 factors. © 2014 American Mathematical Society. | en_US |
dc.fullTextLevel | Full Text | en_US |
dc.identifier.doi | 10.1090/S0002-9939-2014-12114-9 | |
dc.identifier.issn | 0002-9939 | |
dc.identifier.scopus | 2-s2.0-84919604857 | en_US |
dc.identifier.uri | https://hdl.handle.net/11411/3771 | |
dc.identifier.uri | https://doi.org/10.1090/S0002-9939-2014-12114-9 | |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.issue | 10 | en_US |
dc.language.iso | en | en_US |
dc.national | International | en_US |
dc.numberofauthors | 2 | en_US |
dc.pages | 3441 - 34531 | en_US |
dc.publisher | American Mathematical Society | en_US |
dc.relation.ispartof | Proceedings of the American Mathematical Society | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Linear Preserver | en_US |
dc.subject | Majorization | en_US |
dc.subject | Doubly Stochastic Matrix | en_US |
dc.title | The schur-horn theorem for operators with finite spectrum | |
dc.type | Article | |
dc.volume | 142 | en_US |