On the Annihilator Submodules and the Annihilator Essential Graph

Küçük Resim Yok

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer Singapore Pte Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Let R be a commutative ring and let M be an R-module. For a is an element of R, Ann(M)(a) = {m is an element of M : am = 0} is said to be an annihilator submodule of M. In this paper, we study the property of being prime or essential for annihilator submodules of M. Also, we introduce the annihilator essential graph of equivalence classes of zero divisors of M, AE(R)(M), which is constructed from classes of zero divisors, determined by annihilator submodules of M and distinct vertices [a] and [b] are adjacent whenever Ann(M)(a) + Ann(M)(b) is an essential submodule of M. Among other things, we determine when AE(R)(M) is a connected graph, a star graph, or a complete graph. We compare the clique number of AE(R)(M) and the cardinal of m -Ass(R)(M).

Açıklama

Anahtar Kelimeler

Annihilator Submodule, Annihilator Essential Graph, Zero Divisor Graph, Zero-Divisor Graph

Kaynak

Acta Mathematica Vietnamica

WoS Q Değeri

N/A

Scopus Q Değeri

Q3

Cilt

44

Sayı

4

Künye