Learning Turkish hypernymy usingword embeddings

dc.authorid0000-0002-7764-2891en_US
dc.contributor.authorYıldırım, Savaş
dc.contributor.authorYıldız, Tu?ba
dc.date.accessioned2021-06-08T13:26:31Z
dc.date.available2021-06-08T13:26:31Z
dc.date.issued2018
dc.description.abstractRecently, Neural Network Language Models have been effectively applied to many types of Natural Language Processing (NLP) tasks. One popular type of tasks is the discovery of semantic and syntactic regularities that support the researchers in building a lexicon. Word embedding representations are notably good at discovering such linguistic regularities. We argue that two supervised learning approaches based on word embeddings can be successfully applied to the hypernym problem, namely, utilizing embedding offsets between word pairs and learning semantic projection to link the words. The offset-based model classifies offsets as hypernym or not. The semantic projection approach trains a semantic transformation matrix that ideally maps a hyponym to its hypernym. A semantic projection model can learn a projection matrix provided that there is a sufficient number of training word pairs. However, we argue that such models tend to learn is-a-particular-hypernym relation rather than to generalize is-a relation. The embeddings are trained by applying both the Continuous Bag-of Words and the Skip-Gram training models using a huge corpus in Turkish text. The main contribution of the study is the development of a novel and efficient architecture that is well-suited to applying word embeddings approaches to the Turkish language domain. We report that both the projection and the offset classification models give promising and novel results for the Turkish Language. © 2018, the Authors.en_US
dc.fullTextLevelFull Texten_US
dc.identifier.doi10.2991/ijcis.11.1.28en_US
dc.identifier.issn1875-6891
dc.identifier.scopus2-s2.0-85045635078en_US
dc.identifier.urihttps://hdl.handle.net/11411/3716
dc.identifier.urihttps://doi.org/10.2991/ijcis.11.1.28
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakScopusen_US
dc.issue1en_US
dc.language.isoenen_US
dc.nationalInternationalen_US
dc.numberofauthors2en_US
dc.pages371 - 383en_US
dc.publisherAtlantis Pressen_US
dc.relation.ispartofInternational Journal of Computational Intelligence Systemsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSemantic relation classificationen_US
dc.subjectSemantic relation projectionen_US
dc.subjectWord embeddingsen_US
dc.subjectClassification (of information)en_US
dc.subjectLinear transformationsen_US
dc.subjectNatural language processing systemsen_US
dc.subjectClassification modelsen_US
dc.subjectEfficient architectureen_US
dc.subjectEmbeddingsen_US
dc.subjectLearning semanticsen_US
dc.subjectProjection modelsen_US
dc.subjectSemantic relationsen_US
dc.subjectSemantic transformationen_US
dc.subjectSupervised learning approachesen_US
dc.subjectSemanticsen_US
dc.titleLearning Turkish hypernymy usingword embeddingsen_US
dc.typeArticleen_US
dc.volume11en_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Yildirim2018.pdf
Boyut:
580.66 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.71 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: