Randers Metrics of Constant Scalar Curvature
dc.authorid | Sengelen Sevim, Esra/0000-0003-1296-0845 | |
dc.contributor.author | Sevim, Esra Sengelen | |
dc.contributor.author | Shen, Zhongmin | |
dc.date.accessioned | 2024-07-18T20:50:44Z | |
dc.date.available | 2024-07-18T20:50:44Z | |
dc.date.issued | 2013 | |
dc.department | İstanbul Bilgi Üniversitesi | en_US |
dc.description.abstract | Randers metrics are a special class of Finsler metrics. Every Randers metric can be expressed in terms of a Riemannian metric and a vector field via Zermelo navigation. In this paper, we show that a Randers metric has constant scalar curvature if the Riemannian metric has constant scalar curvature and the vector field is homothetic. | en_US |
dc.description.sponsorship | NSF [DMS-0810159] | en_US |
dc.description.sponsorship | Z. S. is supported in part by a NSF grant (DMS-0810159). | en_US |
dc.identifier.doi | 10.4153/CMB-2011-187-1 | |
dc.identifier.endpage | 620 | en_US |
dc.identifier.issn | 0008-4395 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 615 | en_US |
dc.identifier.uri | https://doi.org/10.4153/CMB-2011-187-1 | |
dc.identifier.uri | https://hdl.handle.net/11411/8211 | |
dc.identifier.volume | 56 | en_US |
dc.identifier.wos | WOS:000323296400019 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.language.iso | en | en_US |
dc.publisher | Canadian Mathematical Soc | en_US |
dc.relation.ispartof | Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Randers Metrics | en_US |
dc.subject | Scalar Curvature | en_US |
dc.subject | S-Curvature | en_US |
dc.title | Randers Metrics of Constant Scalar Curvature | en_US |
dc.type | Article | en_US |