Construction of an explicit basis for rules admissible in modal system S4
dc.authorid | Rybakov, Vladimir/0000-0002-6654-9712 | |
dc.authorwosid | Rybakov, Vladimir V/K-7778-2017 | |
dc.contributor.author | Rybakov, VV | |
dc.date.accessioned | 2024-07-18T20:40:01Z | |
dc.date.available | 2024-07-18T20:40:01Z | |
dc.date.issued | 2001 | |
dc.department | İstanbul Bilgi Üniversitesi | en_US |
dc.description.abstract | We find an explicit basis for all admissible rules of the modal logic S4. Our basis consists of an infinite sequence of rules which have compact and simple, readable form and depend on increasing set of variables. This gives a basis for all quasi-identities valid in the free modal algebra F-S4(omega) of countable rank. | en_US |
dc.identifier.doi | 10.1002/1521-3870(200111)47:4<441 | |
dc.identifier.endpage | 446 | en_US |
dc.identifier.issn | 0942-5616 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopus | 2-s2.0-0035541196 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 441 | en_US |
dc.identifier.uri | https://doi.org/10.1002/1521-3870(200111)47:4<441 | |
dc.identifier.uri | https://hdl.handle.net/11411/6923 | |
dc.identifier.volume | 47 | en_US |
dc.identifier.wos | WOS:000172160800002 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wiley-V C H Verlag Gmbh | en_US |
dc.relation.ispartof | Mathematical Logic Quarterly | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | İnference Rule | en_US |
dc.subject | Modal Logic | en_US |
dc.subject | Free Algebra | en_US |
dc.subject | Kripke Model | en_US |
dc.subject | Basis For Admissible Rules | en_US |
dc.subject | Admissible Rule | en_US |
dc.subject | Intuitionistic Logic | en_US |
dc.title | Construction of an explicit basis for rules admissible in modal system S4 | |
dc.type | Article |