Construction of an explicit basis for rules admissible in modal system S4

dc.authoridRybakov, Vladimir/0000-0002-6654-9712
dc.authorwosidRybakov, Vladimir V/K-7778-2017
dc.contributor.authorRybakov, VV
dc.date.accessioned2024-07-18T20:40:01Z
dc.date.available2024-07-18T20:40:01Z
dc.date.issued2001
dc.departmentİstanbul Bilgi Üniversitesien_US
dc.description.abstractWe find an explicit basis for all admissible rules of the modal logic S4. Our basis consists of an infinite sequence of rules which have compact and simple, readable form and depend on increasing set of variables. This gives a basis for all quasi-identities valid in the free modal algebra F-S4(omega) of countable rank.en_US
dc.identifier.doi10.1002/1521-3870(200111)47:4<441
dc.identifier.endpage446en_US
dc.identifier.issn0942-5616
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-0035541196en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage441en_US
dc.identifier.urihttps://doi.org/10.1002/1521-3870(200111)47:4<441
dc.identifier.urihttps://hdl.handle.net/11411/6923
dc.identifier.volume47en_US
dc.identifier.wosWOS:000172160800002en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherWiley-V C H Verlag Gmbhen_US
dc.relation.ispartofMathematical Logic Quarterlyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectİnference Ruleen_US
dc.subjectModal Logicen_US
dc.subjectFree Algebraen_US
dc.subjectKripke Modelen_US
dc.subjectBasis For Admissible Rulesen_US
dc.subjectAdmissible Ruleen_US
dc.subjectIntuitionistic Logicen_US
dc.titleConstruction of an explicit basis for rules admissible in modal system S4
dc.typeArticle

Dosyalar