A Submodule-Based Zero Divisor Graph for Modules
dc.contributor.author | Babaei, Sakineh | |
dc.contributor.author | Payrovi, Shiroyeh | |
dc.contributor.author | Sevim, Esra Sengelen | |
dc.date.accessioned | 2024-07-18T20:52:11Z | |
dc.date.available | 2024-07-18T20:52:11Z | |
dc.date.issued | 2019 | |
dc.department | İstanbul Bilgi Üniversitesi | en_US |
dc.description.abstract | Let R be a commutative ring with identity and M be an R-module. The zero divisor graph of M is denoted by Gamma(M). In this study, we are going to generalize the zero divisor graph Gamma(M) to submodule-based zero divisor graph Gamma(M, N) by replacing elements whose product is zero with elements whose product is in some submodule N of M. The main objective of this paper is to study the interplay of the properties of submodule N and the properties of Gamma(M, N). | en_US |
dc.identifier.endpage | 157 | en_US |
dc.identifier.issn | 1735-4463 | |
dc.identifier.issn | 2008-9473 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85067596593 | en_US |
dc.identifier.scopusquality | Q4 | en_US |
dc.identifier.startpage | 147 | en_US |
dc.identifier.uri | https://hdl.handle.net/11411/8547 | |
dc.identifier.volume | 14 | en_US |
dc.identifier.wos | WOS:000464756100013 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Tarbiat Modares Univ | en_US |
dc.relation.ispartof | Iranian Journal of Mathematical Sciences and Informatics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Zero Divisor Graph | en_US |
dc.subject | Submodule-Based Zero Divisor Graph | en_US |
dc.subject | Semisimple Module | en_US |
dc.title | A Submodule-Based Zero Divisor Graph for Modules | |
dc.type | Article |