Performance of the missing transverse momentum triggers for the ATLAS detector during Run-2 data taking
dc.WoS.categories | Physics, Particles & Fields | en_US |
dc.authorid | 0000-0001-5050-8441 | en_US |
dc.contributor.author | Çetin, Serkant Ali | |
dc.date.accessioned | 2020-11-09T12:26:11Z | |
dc.date.available | 2020-11-09T12:26:11Z | |
dc.date.issued | 2020-08-19 | |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Enerji Sistemleri Mühendisliği Bölümü | en_US |
dc.description | 53 pages | en_US |
dc.description.abstract | The factor of four increase in the LHC luminosity, from 0.5x10(34)cm(-2)s(-1) to 2.0x10(34)cm(-2)s(-1), and the corresponding increase in pile-up collisions during the 2015-2018 data-taking period, presented a challenge for the ATLAS trigger, particularly for those algorithms that select events with missing transverse momentum. The output data rate at fixed threshold typically increases exponentially with the number of pile-up collisions, so the legacy algorithms from previous LHC data-taking periods had to be tuned and new approaches developed to maintain the high trigger efficiency achieved in earlier operations. A study of the trigger performance and comparisons with simulations show that these changes resulted in event selection efficiencies of >98% for this period, meeting and in some cases exceeding the performance of similar triggers in earlier run periods, while at the same time keeping the necessary bandwidth within acceptable limits. | en_US |
dc.description.tableofcontents | 1 Introduction 1 2 ATLAS detector 3 3 Description of the Emiss T trigger algorithms 4 3.1 Level-1 trigger 5 3.2 Trigger using calorimeter cell signals (cell) 6 3.3 Trigger using topological clusters of calorimeter cells (tc lcw) 6 3.4 Trigger based on jets (mht) 6 3.5 Trigger implementing local pile-up suppression (pufit) 7 4 Offline object and Emiss T reconstruction 7 5 Emiss T trigger performance 8 5.1 Background model based on detector resolution 8 5.2 Level-1 trigger performance 11 5.3 High-level trigger performance 12 5.4 Trigger menu evolution and performance 16 5.5 Algorithm computation times 18 5.6 Dependence on event characteristics 19 5.7 Comparison with Monte Carlo simulation 21 6 Conclusion 23 A Full definition of the trigger implementing local pile-up suppression 24 B Details of the offline reconstruction algorithms 27 C The cell Emiss T background distribution model 28 The ATLAS collaboration 35 | en_US |
dc.fullTextLevel | Full Text | en_US |
dc.identifier.doi | 10.1007/JHEP08(2020)080 | |
dc.identifier.issn | 1029-8479 | |
dc.identifier.scopus | 2-s2.0-85089974543 | en_US |
dc.identifier.uri | https://hdl.handle.net/11411/2535 | |
dc.identifier.uri | https://doi.org/10.1007/JHEP08(2020)080 | |
dc.identifier.wos | WOS:000563641800001 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.issue | 8 | en_US |
dc.language.iso | en | en_US |
dc.national | International | en_US |
dc.numberofauthors | 1000+ | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Journal of High Energy Physics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Hadron-Hadron scattering (experiments) | en_US |
dc.title | Performance of the missing transverse momentum triggers for the ATLAS detector during Run-2 data taking | |
dc.type | Article |