Performance of the missing transverse momentum triggers for the ATLAS detector during Run-2 data taking

dc.WoS.categoriesPhysics, Particles & Fieldsen_US
dc.authorid0000-0001-5050-8441en_US
dc.contributor.authorÇetin, Serkant Ali
dc.date.accessioned2020-11-09T12:26:11Z
dc.date.available2020-11-09T12:26:11Z
dc.date.issued2020-08-19
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Enerji Sistemleri Mühendisliği Bölümüen_US
dc.description53 pagesen_US
dc.description.abstractThe factor of four increase in the LHC luminosity, from 0.5x10(34)cm(-2)s(-1) to 2.0x10(34)cm(-2)s(-1), and the corresponding increase in pile-up collisions during the 2015-2018 data-taking period, presented a challenge for the ATLAS trigger, particularly for those algorithms that select events with missing transverse momentum. The output data rate at fixed threshold typically increases exponentially with the number of pile-up collisions, so the legacy algorithms from previous LHC data-taking periods had to be tuned and new approaches developed to maintain the high trigger efficiency achieved in earlier operations. A study of the trigger performance and comparisons with simulations show that these changes resulted in event selection efficiencies of >98% for this period, meeting and in some cases exceeding the performance of similar triggers in earlier run periods, while at the same time keeping the necessary bandwidth within acceptable limits.en_US
dc.description.tableofcontents1 Introduction 1 2 ATLAS detector 3 3 Description of the Emiss T trigger algorithms 4 3.1 Level-1 trigger 5 3.2 Trigger using calorimeter cell signals (cell) 6 3.3 Trigger using topological clusters of calorimeter cells (tc lcw) 6 3.4 Trigger based on jets (mht) 6 3.5 Trigger implementing local pile-up suppression (pufit) 7 4 Offline object and Emiss T reconstruction 7 5 Emiss T trigger performance 8 5.1 Background model based on detector resolution 8 5.2 Level-1 trigger performance 11 5.3 High-level trigger performance 12 5.4 Trigger menu evolution and performance 16 5.5 Algorithm computation times 18 5.6 Dependence on event characteristics 19 5.7 Comparison with Monte Carlo simulation 21 6 Conclusion 23 A Full definition of the trigger implementing local pile-up suppression 24 B Details of the offline reconstruction algorithms 27 C The cell Emiss T background distribution model 28 The ATLAS collaboration 35en_US
dc.fullTextLevelFull Texten_US
dc.identifier.doi10.1007/JHEP08(2020)080
dc.identifier.issn1029-8479
dc.identifier.scopus2-s2.0-85089974543en_US
dc.identifier.urihttps://hdl.handle.net/11411/2535
dc.identifier.urihttps://doi.org/10.1007/JHEP08(2020)080
dc.identifier.wosWOS:000563641800001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.issue8en_US
dc.language.isoenen_US
dc.nationalInternationalen_US
dc.numberofauthors1000+en_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of High Energy Physicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHadron-Hadron scattering (experiments)en_US
dc.titlePerformance of the missing transverse momentum triggers for the ATLAS detector during Run-2 data taking
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
2020WoSCetin.pdf
Boyut:
1.98 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.71 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: