Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques

dc.WoS.categoriesInstruments & Instrumentationen_US
dc.authorid0000-0002-9007-8260en_US
dc.contributor.authorYetkin, Elif Aslı
dc.date.accessioned2020-12-08T07:03:21Z
dc.date.available2020-12-08T07:03:21Z
dc.date.issued2020-06
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Enerji Sistemleri Mühendisliği Bölümüen_US
dc.description88 pagesen_US
dc.description.abstractMachine-learning (ML) techniques are explored to identify and classify hadronic decays of highly Lorentz-boosted W/Z/Higgs bosons and top quarks. Techniques without ML have also been evaluated and are included for comparison. The identification performances of a variety of algorithms are characterized in simulated events and directly compared with data. The algorithms are validated using proton-proton collision data at root S = 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). Systematic uncertainties are assessed by comparing the results obtained using simulation and collision data. The new techniques studied in this paper provide significant performance improvements over non-ML techniques, reducing the background rate by up to an order of magnitude at the same signal efficiency.en_US
dc.fullTextLevelFull Texten_US
dc.identifier.doi10.1088/1748-0221/15/06/P06005
dc.identifier.issn1748-0221
dc.identifier.urihttps://hdl.handle.net/11411/2781
dc.identifier.urihttps://doi.org/10.1088/1748-0221/15/06/P06005
dc.identifier.wosWOS:000545350900005en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.issue6en_US
dc.language.isoenen_US
dc.nationalInternationalen_US
dc.numberofauthors1000+en_US
dc.publisherIOP Publishing Ltd.en_US
dc.relation.ispartofJournal of Instrumentationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPattern recognition, cluster finding, calibration and fitting methodsen_US
dc.subjectLarge detector-systems performanceen_US
dc.titleIdentification of heavy, energetic, hadronically decaying particles using machine-learning techniques
dc.typeArticle
dc.volume15en_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
2020WoSYetkin.pdf
Boyut:
5.35 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.71 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: