Stability of interval time-varying delay systems: A nonuniform delay partitioning approach

dc.authorscopusid57221092049
dc.contributor.authorParlakçi, M.N.A.
dc.date.accessioned2024-07-18T20:17:24Z
dc.date.available2024-07-18T20:17:24Z
dc.date.issued2009
dc.description.abstractThis paper investigates the conservatism reduction of Lyapunov-Krasovskii based conditions for the stability of a class of interval time-varying delay systems. The main idea is based on the nonuniform decomposition of the integral terms of the Lyapunov-Krasovskii functional. The delay interval is decomposed into a finite number of nonuniform segments with some scaling parameters. Both differentiable delay case and nondifferentiable delay case or unknown delay derivative bound case are taken into consideration. Sufficient delay-dependent stability criteria are derived in terms of matrix inequalities. Introducing a cone complementary problem, a convex optimization algorithm is obtained so that a suboptimal maximum allowable delay upper bound is achieved. Two numerical examples with case studies are given to demonstrate the effectiveness of the proposed method with respect to some existing ones from the literature. Copyright © IFAC 2009.en_US
dc.identifier.doi10.3182/20090901-3-ro-4009.00013
dc.identifier.endpage100en_US
dc.identifier.isbn9783902661678
dc.identifier.issn1474-6670
dc.identifier.issuePART 1en_US
dc.identifier.scopus2-s2.0-80051504323en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage96en_US
dc.identifier.urihttps://doi.org/10.3182/20090901-3-ro-4009.00013
dc.identifier.urihttps://hdl.handle.net/11411/6526
dc.identifier.volume8en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIFAC Secretariaten_US
dc.relation.ispartofIFAC Proceedings Volumes (IFAC-PapersOnline)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCone Complementary Methoden_US
dc.subjectDelay Partitioningen_US
dc.subjectInterval Time-Varying Delayen_US
dc.subjectLinear Matrix İnequalityen_US
dc.subjectTime Delay Systemsen_US
dc.subjectConvex Optimizationen_US
dc.subjectDelay Control Systemsen_US
dc.subjectLinear Matrix İnequalitiesen_US
dc.subjectLyapunov Functionsen_US
dc.subjectNumerical Methodsen_US
dc.subjectSystem Stabilityen_US
dc.subjectTime Delayen_US
dc.subjectTime Varying Control Systemsen_US
dc.subjectComplementary Methodsen_US
dc.subjectConservatism Reductionsen_US
dc.subjectConvex Optimization Algorithmsen_US
dc.subjectDelay Dependent Stability Criterionen_US
dc.subjectDelay Partitioningen_US
dc.subjectInterval Time-Varying Delaysen_US
dc.subjectLyapunov-Krasovskii Functionalsen_US
dc.subjectTime-Delay Systemsen_US
dc.subjectStability Criteriaen_US
dc.titleStability of interval time-varying delay systems: A nonuniform delay partitioning approach
dc.typeConference Object

Dosyalar