On the compressed essential graph of a module over a commutative ring

dc.contributor.authorPayrovi, S. H.
dc.contributor.authorBabaei, S.
dc.contributor.authorSengelen Sevim, E.
dc.date.accessioned2024-07-18T20:48:48Z
dc.date.available2024-07-18T20:48:48Z
dc.date.issued2021
dc.departmentİstanbul Bilgi Üniversitesien_US
dc.description.abstractLet R be a commutative ring and M be an R-module. The compressed essential graph of M, denoted by EG(M) is a simple undirected graph associated to M whose vertices are classes of torsion elements of M and two distinct classes [m] and [m '] are adjacent if and only if Ann(R)(m) + Ann(R)(m ') is an essential ideal of R. In this paper, we study diameter and girth of EG(M) and we characterize all modules for which the compressed essential graph is connected. Moreover, it is proved that omega(EG(M)) = |Ass(R)(M)|, whenever R is Noetherian and M is a finitely generated multiplication module with r(Ann(R)(M)) = 0.en_US
dc.identifier.doi10.1142/S1793557121501254
dc.identifier.issn1793-5571
dc.identifier.issn1793-7183
dc.identifier.issue7en_US
dc.identifier.scopus2-s2.0-85093958937en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.urihttps://doi.org/10.1142/S1793557121501254
dc.identifier.urihttps://hdl.handle.net/11411/7933
dc.identifier.volume14en_US
dc.identifier.wosWOS:000678604500012en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publ Co Pte Ltden_US
dc.relation.ispartofAsian-European Journal of Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectZero Divisor Graphen_US
dc.subjectEssential Zero Divisor Graphen_US
dc.subjectAssociated Prime İdealsen_US
dc.subjectZero-Divisor Graphen_US
dc.titleOn the compressed essential graph of a module over a commutative ring
dc.typeArticle

Dosyalar