Hyper-stable collective rankings

dc.authoridLAINE, Jean/0000-0002-7305-7556
dc.contributor.authorLaine, Jean
dc.date.accessioned2024-07-18T20:58:31Z
dc.date.available2024-07-18T20:58:31Z
dc.date.issued2015
dc.departmentÄ°stanbul Bilgi Ãœniversitesien_US
dc.description.abstractWe introduce a new consistency property for social welfare functions (SWF), called hyper-stability. An SWF is hyper-stable if at any profile over finitely many alternatives where a weak order R is chosen, there exists a profile of linear orders over linear orders, called hyper-profile, at which only linearizations of R are ranked first by the SWF. Profiles induce hyper-profiles according to some minimal compatibility conditions. We provide sufficient conditions for hyper-stability, and we investigate hyper-stability for several Condorcet SWFs. An important conclusion is that there are non-dictatorial hyper-stable SWFs. (C) 2015 Elsevier B.V. All rights reserved.en_US
dc.identifier.doi10.1016/j.mathsocsci.2015.06.002
dc.identifier.endpage80en_US
dc.identifier.issn0165-4896
dc.identifier.issn1879-3118
dc.identifier.scopus2-s2.0-84939424396en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage70en_US
dc.identifier.urihttps://doi.org/10.1016/j.mathsocsci.2015.06.002
dc.identifier.urihttps://hdl.handle.net/11411/8999
dc.identifier.volume77en_US
dc.identifier.wosWOS:000361250900010en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Science Bven_US
dc.relation.ispartofMathematical Social Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleHyper-stable collective rankingsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
Ä°sim:
jean-laine.pdf
Boyut:
621.68 KB
Biçim:
Adobe Portable Document Format