Prediction of Reservoir Temperatures Using Hydrogeochemical Data, Western Anatolia Geothermal Systems (Turkey): A Machine Learning Approach
dc.authorid | HAKLIDIR, FUSUN SERVIN TUT/0000-0002-9469-8870|HAKLIDIR, MEHMET/0000-0003-4985-1116 | |
dc.authorwosid | HAKLIDIR, FUSUN SERVIN TUT/ABI-3978-2020 | |
dc.authorwosid | HAKLIDIR, MEHMET/ABI-3996-2020 | |
dc.contributor.author | Haklidir, Fusun S. Tut | |
dc.contributor.author | Haklidir, Mehmet | |
dc.date.accessioned | 2024-07-18T20:42:15Z | |
dc.date.available | 2024-07-18T20:42:15Z | |
dc.date.issued | 2020 | |
dc.department | İstanbul Bilgi Üniversitesi | en_US |
dc.description.abstract | Geothermal fluids can be used for purposes such as power production, district heating/cooling, agriculture, and industrial and thermal tourism. Although using geothermal fluids is beneficial, it requires detailed exploration studies of a region. These exploration studies mainly involve geology, geophysics and geochemistry disciplines to understand the location, dimensions, possible capacity and temperature of a reservoir before beginning drilling operations. Because of the high operational costs, the exploration phase of a geothermal project is of great importance to reduce project costs. Evaluation of existing earth sciences data, detailed geology studies, mapping and some geochemical studies, such as using geothermometers, can provide information about a potential geothermal reservoir in a geothermal field. Machine learning is a technology for data analysis which identifies patterns in data and uses them to make predictions about new data points automatically. In this study, a deep learning model is developed to predict geothermal reservoir temperatures based on selected hydrogeochemistry data from different geothermal systems. Two traditional regression approaches, linear regression and linear support vector machine, are performed to compare the prediction performance of our proposed deep learning model. The objective of the study is to obtain the algorithm having the lowest root-mean-square error and mean absolute error. The results show that the deep neural network (DNN) algorithm generated the lowest errors. The DNN model provided the most accurate values close to geothermometer calculations for reservoir temperature. The performance comparison showed that our deep learning model achieved the best prediction performance compared to traditional machine learning techniques. | en_US |
dc.identifier.doi | 10.1007/s11053-019-09596-0 | |
dc.identifier.endpage | 2346 | en_US |
dc.identifier.issn | 1520-7439 | |
dc.identifier.issn | 1573-8981 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopus | 2-s2.0-85076216589 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 2333 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s11053-019-09596-0 | |
dc.identifier.uri | https://hdl.handle.net/11411/7204 | |
dc.identifier.volume | 29 | en_US |
dc.identifier.wos | WOS:000544723000005 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Natural Resources Research | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Deep Learning | en_US |
dc.subject | Hydrogeochemistry | en_US |
dc.subject | Reservoir Temperature Prediction | en_US |
dc.subject | Geothermal Exploration | en_US |
dc.subject | Waters | en_US |
dc.subject | Scale | en_US |
dc.subject | Brine | en_US |
dc.title | Prediction of Reservoir Temperatures Using Hydrogeochemical Data, Western Anatolia Geothermal Systems (Turkey): A Machine Learning Approach | en_US |
dc.type | Article | en_US |