Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Hakkında
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Shen, Zhongmin" seçeneğine göre listele

Listeleniyor 1 - 7 / 7
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    ON A CLASS OF FINSLER METRICS OF QUADRATIC WEYL CURVATURE
    (Tohoku University, 2023) Gabrani, Mehran; Sevim, Esra Sengelen; Shen, Zhongmin
    The class of warped product manifolds plays an important role in differential geometry and physics. In this paper, we shall study product manifolds R x ?????? with Finsler metrics arising from warped product structure. We give an equivalent condition for those metrics to be of quadratic Weyl curvature.
  • Küçük Resim Yok
    Öğe
    ON A CLASS OF RICCI-FLAT DOUGLAS METRICS
    (World Scientific Publ Co Pte Ltd, 2012) Sevim, Esra Sengelen; Shen, Zhongmin; Zhao, Lili
    In this paper, we study a special class of Finsler metrics which are defined by a Riemannian metric and a 1-form on a manifold. We find equations that characterize Ricci-flat Douglas metrics among this class.
  • Küçük Resim Yok
    Öğe
    On Some Ricci Curvature Tensors in Finsler Geometry
    (Springer Basel Ag, 2023) Sevim, Esra Sengelen; Shen, Zhongmin; Ulgen, Semail
    In this paper, we discuss several Ricci curvature tensors and their relationship with the Ricci curvature and some non-Riemannian quantities. By these Ricci curvature tensors, we shall have a better understanding on the non-Riemannian quantities.
  • Küçük Resim Yok
    Öğe
    On strongly Ricci-Quadratic Finsler Metrics
    (Springer, 2023) Sevim, Esra Sengelen; Shen, Zhongmin; Ulgen, Semail
    Finsler metrics being Ricci-quadratic is a non-Riemannian condition since the Ricci curvature (tensor) is always Ricci-quadratic for Riemannian metrics. In this paper, we introduce the notion of strongly Ricci-quadratic Finsler metrics. We classify strongly Ricci-quadratic Randers metrics expressed in a navigation form.
  • Küçük Resim Yok
    Öğe
    Randers Metrics of Constant Scalar Curvature
    (Canadian Mathematical Soc, 2013) Sevim, Esra Sengelen; Shen, Zhongmin
    Randers metrics are a special class of Finsler metrics. Every Randers metric can be expressed in terms of a Riemannian metric and a vector field via Zermelo navigation. In this paper, we show that a Randers metric has constant scalar curvature if the Riemannian metric has constant scalar curvature and the vector field is homothetic.
  • Küçük Resim Yok
    Öğe
    Some projectively Ricci-flat (?, ?)-metrics
    (Springer, 2023) Gabrani, Mehran; Sevim, Esra Sengelen; Shen, Zhongmin
    In this paper, we construct some projectively Ricci-flat Finsler metrics defined by a Riemannian metric a and a 1-form beta. Moreover, we classify the projectively Ricci-flat (alpha, beta)-metrics under the condition, that beta is a non-parallel Killing form which has non-zero constant length.
  • Küçük Resim Yok
    Öğe
    Some Ricci-flat Finsler metrics
    (Kossuth Lajos Tudomanyegyetem, 2013) Sevim, Esra Sengelen; Shen, Zhongmin; Zhao, Lili
    In this paper, we construct some Ricci-fiat Finsler metrics defined by a Riemannian metric and a 1-form.

| İstanbul Bilgi Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Eski Silahtarağa Elektrik Santralı, Eyüpsultan, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Hakkında
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim