Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Hakkında
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Saner, Ahmet Can" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Design of a warehouse order picking policy using genetic algorithm
    (İstanbul Bilgi Üniversitesi, 2017) Saner, Ahmet Can; Toy, Ayhan Özgür
    [Abstract Not Available]
  • Küçük Resim Yok
    Öğe
    PERFORMANCE COMPARISON OF META-HEURISTICS FOR THE MULTIBLOCK WAREHOUSE ORDER PICKING PROBLEM
    (Univ Cincinnati Industrial Engineering, 2021) Duzgit, Zehra; Toy, Ayhan Ozgur; Saner, Ahmet Can
    This study focuses on streamlining the order-picking process in a warehouse. We consider determining the picking sequence of items in a pick-list to minimize the total traveled distance in a multiblock warehouse, where a low-level picker-to-parts manual picking system is employed. We assume that the items are stored randomly in the warehouse. First, we construct a distance matrix of the shortest path between any pair of items. Next, using the distance matrix, we implement two meta-heuristics-the tabu search algorithm and the iterated greedy algorithm-to determine the picking sequence with the minimum total traveled distance. Through a numerical study, the performances of the meta-heuristic algorithms are compared with those of popular rule-based heuristics (S-shape, largest gap, and Combined+) and the bestknown solutions. We conducted the numerical study in two stages. In the first stage, we considered a two-block rectangular warehouse, and in the second stage, we considered a three-block rectangular warehouse. The performance of the heuristics was calculated based on the optimal solution when available or the best calculated bound when the optimal solution is not available. We observed that the iterated greedy algorithm significantly outperforms the other heuristics for both stages.

| İstanbul Bilgi Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Eski Silahtarağa Elektrik Santralı, Eyüpsultan, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Hakkında
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim