Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Hakkında
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Salah, Ali Albert" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Multimodal affect analysis of psychodynamic play therapy
    (Routledge Journals, Taylor & Francis Ltd, 2021) Halfon, Sibel; Doyran, Metehan; Turkmen, Batikan; Oktay, Eda Aydin; Salah, Ali Albert
    Objective: We explore state of the art machine learning based tools for automatic facial and linguistic affect analysis to allow easier, faster, and more precise quantification and annotation of children's verbal and non-verbal affective expressions in psychodynamic child psychotherapy. Method: The sample included 53 Turkish children: 41 with internalizing, externalizing and comorbid problems; 12 in the non-clinical range. We collected audio and video recordings of 148 sessions, which were manually transcribed. Independent raters coded children's expressions of pleasure, anger, sadness and anxiety using the Children's Play Therapy Instrument (CPTI). Automatic facial and linguistic affect analysis modalities were adapted, developed, and combined in a system that predicts affect. Statistical regression methods (linear and polynomial regression) and machine learning techniques (deep learning, support vector regression and extreme learning machine) were used for predicting CPTI affect dimensions. Results: Experimental results show significant associations between automated affect predictions and CPTI affect dimensions with small to medium effect sizes. Fusion of facial and linguistic features work best for pleasure predictions; however, for other affect predictions linguistic analyses outperform facial analyses. External validity analyses partially support anger and pleasure predictions. Discussion: The system enables retrieving affective expressions of children, but needs improvement for precision.

| İstanbul Bilgi Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Eski Silahtarağa Elektrik Santralı, Eyüpsultan, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Hakkında
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim