Yazar "Oztoprak, Burak" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Bilateral Control With Continuously Variable Scaling(IEEE, 2018) Oztoprak, Burak; Baran, Eray A.; Sabanovic, AsifThis paper proposes a method for the scaled bilateral teleoperation with continuously variable position and force scaling. In the proposed method, the controller is reformulated to synchronize the forces and velocities which provides the operator with the ability to change the scaling gains during operation. For the derivation of the controller, exponentially decaying error dynamics are preferred over the assumption of disturbance compensation with Disturbance Observers (DOB). Following the mathematical derivation, the algorithm is tested on a setup containing single DOF master and slave robots with the ability of giving force feedback to the operator. In order to provide a complete analysis, several different sets of experiments are made with sinusoidal velocity and force scales having different amplitudes and frequencies. Experiment results illustrate the successful tracking responses and stable operation of the proposed control scheme for the continuously varying velocity and force scales.Öğe Bilateral teleoperation with continuously variable scaling and PD force control(Sage Publications Ltd, 2021) Oztoprak, Burak; Baran, Eray A.; Sabanovic, AsifThis paper investigates the bilateral teleoperation with the possibility of continuously variable scaling during real-time operation. The algorithm proposed for this purpose provides the operator with the ability to change the scaling gains of force and velocity loops during operation. The controllers are derived to enforce exponentially decaying error dynamics on systems which have inner loop disturbance compensation. The proposed architecture assumes the scale factors as continuous functions of time which have continuous derivatives that are also included in the mathematical derivation. Unlike the existing studies, the presented framework allows real-time adaptation of scaling gains, which provides the user with the ability to conduct coarse and fine motion in the same operation. The Lyapunov stability proof of the proposed method is made and the margins of the controller gains are identified for practical operation. Furthermore, the operational accuracy is enhanced by the application of a PD force control loop which is also new for scaled bilateral teleoperation. The realization of PD loop is made using an alpha-beta-gamma filter to differentiate the force signal. The algorithm is validated on a setup consisted of two single DOF motion control systems. In order to provide a complete analysis, a wide range of experiments are made, velocity and force scales having sinusoidal patterns with different amplitudes and frequencies. Moreover, comparison with a classical bilateral control architecture is made to highlight the flexibility of the proposed control method. The efficacy of the proposed approach is solidified by the successful tracking responses obtained from these experiments.Öğe Robust Motion Modification for Robot Manipulators in Constrained Environments(IEEE, 2018) Muslu, Batin; Oztoprak, Burak; Baran, Eray A.; Sabanovic, AsifThis paper presents a controller structure for the continuous and robust modification of motion for multi body systems encountering contact with an environment during free motion. The presented algorithm relies on the reformulation of the position tracking error with a term proportional to the reaction force. With the proposed method, fusion of the position and the force controllers can be achieved which provide the robot with certain level of compliance. The derivation of the proposed method is followed by experiments made on a pantograph mechanism actuated by direct drive linear motors. The results obtained from the experiments illustrate the success of the proposed control architecture in providing a natural behavior for the robotic systems working in constrained environments.