Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Hakkında
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ikeda, KI" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    On the local Artin conductor fArtin (?) of a character ? of Gal(E/K) -: II
    (Indian Academy Sciences, 2003) Ikeda, KI
    This paper which is a continuation of [21, is essentially expository in nature, although some new results are presented. Let K be a local field with finite residue class field kappa(K) - We first define (cf. Definition 2.4) the conductor f (E/K) of an arbitrary finite Galois extension E/K in the sense of non-abelian local class field theory as [GRAPHICS] where n(G) is the break in the upper ramification filtration of G = Gal(E/K) defined by G(nG) not equal G(nG+delta) = 1, For Alldelta epsilon R (greater than or equal to 0). Next, we study the basic properties of the ideal f (E/K) in O-K in case E/K is a metabelian extension utilizing Koch-de Shalit metabelian local class field theory (cf. [8]). After reviewing the Artin character a(G) : G --> C of G := Gal(E/K) and Artin representations A(G) : G --> GL(V) corresponding to a(G) : G --> C, we prove that (Proposition 3.2 and. Corollary 3.5) [GRAPHICS] where chi(rho) : G ---> C is the character associated to an irreducible representation rho G --> GL(V) of G (over C). The first main result (Theorem, 1.2) of the paper states that, if in particular, rho : G --> GL(V) is an irreducible representation of G (over C) with metabelian image, then [GRAPHICS] where Gal (E-ker(rho)/ E-ker(rho).) is any maximal abelian normal subgroup of Gal (E-ker(rho) / K) containing Gal (E-ker(rho) / K)', and the break n(G/ker(rho)) in the upper ramification filtration of G/ker(rho) can be computed and located by metabelian local class field theory. The proof utilizes Basmaji's theory on the structure of irreducible faithful representations of finite metabelian groups (cf. [1]) and on metabelian local class field theory (cf. [8]). We then discuss the application of Theorem 1.2 on a problem posed by Weil on the construction of a 'natural' A(G) of G over C (Problem 1.3). More precisely, we prove in Theorem 1.4 that if E/K is a metabelian extension with Galois group G, then [GRAPHICS] where N runs over all normal subgroups of G, and for such an N, nu(N) denotes the collection of all similar to-equivalence classes [omega] similar to, where 'similar to' denotes the equivalence relation on the set of all representations omega : (G/N)(.) --> C-x satisfying the conditions inert (omega) = [delta epsilon G / N : omegadelta = omega] = (G/N)(.) and [GRAPHICS] where delta runs over R((G/N)(.)\(G/N)), a fixed given complete system of representatives of (G/N)(.)\(G/N), by declaring that omega(1) similar to omega(2) if and only if omega(1) = omega(2,delta) for some delta epsilon R((G/N)(.)\(G/N)). Finally, we conclude our paper with certain remarks on Problem 1. 1 and Problem 1.3.

| İstanbul Bilgi Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Eski Silahtarağa Elektrik Santralı, Eyüpsultan, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Hakkında
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim