Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Hakkında
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Han, H." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Facial Expression Recognition in the Wild with Application in Robotics
    (Institute of Electrical and Electronics Engineers Inc., 2021) Han, H.; Karadeniz, O.; Sönmez, E.B.; Dalyan, T.; Sanoğlu, B.
    One of the major problems with robot companions is their lack of credibility. Since emotions play a key role in human behaviour their implementation in virtual agents is a conditio sine-qua-non for realistic models. That is, correct classification of facial expressions in the wild is a necessary preprocessing step for implementing artificial empathy. The aim of this work is to implement a robust Facial Expression Recognition (FER) module into a robot. Considering the results of an empirical comparison among the most successful deep learning algorithms used for FER, this study fixes the state-ofthe-art performance of 75% on the FER2013 database with the ensemble method. With a single model, the best performance of 70.8% has been reached using the VGG16 architecture. Finally, the VGG16-based FER module has been been implemented into a robot and reached a performance of 70% when tested with wild expressive faces. © 2021 IEEE
  • Küçük Resim Yok
    Öğe
    Facial Expression Recognition on Wild and Multi-Label Faces with Deep Learning
    (Institute of Electrical and Electronics Engineers Inc., 2023) Han, H.; Sonmez, E.B.
    The analysis of facial expressions is a powerful tool to decode nonverbal behavior in humans. Due to its importance, several studies have already been done in the past. However, facial expression recognition on wild and multi-label faces is under-investigated also due to the limited number of available databases. This paper fills in the current lack by challenging the RAF-ML dataset and fixing the state-of-the-art performance of 50.5% on the "single label experiment". The proposed method is also tested in a second experiment, suggested by this work, which considers only wild faces having a dominant expression. The benchmark performance for the second trial is 56.1%. The deep-learning algorithms presented in this work are described in detail to facilitate their reproduction. © 2023 IEEE.

| İstanbul Bilgi Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Eski Silahtarağa Elektrik Santralı, Eyüpsultan, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Hakkında
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim