Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Hakkında
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Erman, F" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    A singular one-dimensional bound state problem and its degeneracies
    (Springer Verlag, 2017-08-01) Erman, F; Gadella, M; Tunalı, Seçil; Uncu, H
    We give a brief exposition of the formulation of the bound state problem for the one-dimensional system of N attractive Dirac delta potentials, as an N× N matrix eigenvalue problem (?A= ?A). The main aim of this paper is to illustrate that the non-degeneracy theorem in one dimension breaks down for the equidistantly distributed Dirac delta potential, where the matrix ? becomes a special form of the circulant matrix. We then give elementary proof that the ground state is always non-degenerate and the associated wave function may be chosen to be positive by using the Perron-Frobenius theorem. We also prove that removing a single center from the system of N delta centers shifts all the bound state energy levels upward as a simple consequence of the Cauchy interlacing theorem. © 2017, Società Italiana di Fisica and Springer-Verlag GmbH Germany.

| İstanbul Bilgi Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Eski Silahtarağa Elektrik Santralı, Eyüpsultan, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Hakkında
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim