Yazar "Coskun, M." seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A comprehensive investigation of the structural, chemical, and dielectric properties of co-doped YMnO3 multiferroic component(Springer Heidelberg, 2024) Polat, O.; Coskun, M.; Yildirim, Y.; Coskun, F. M.; Durmus, Z.; Sen, C.; Caglar, Y.The solid-state reaction technique was employed to synthesize compounds of YMnO3 (YMO) and YMn1-xCoxO3 (YMCO) with various Co doping levels (x = 0.01, 0.10, 0.20, and 0.40), where Co atoms partially substituted Mn sites. XRD studies confirmed the presence of two phases, YMO and Y0.98CoO3 (YCO), for doping ratios above x = 0.10. Additionally, an increase in crystalline size was observed with cobalt substitution. Surface characteristics of synthesized pellets were examined using scanning electron microscopy (SEM), revealing a less porous structure with cobalt doping. XPS analysis elucidated valence states, showing the presence of both Mn3+ and Mn4+, as well as Co2+ and Co3+. The x = 0.20 and 0.40 Co-doped samples exhibited lower grain and grain boundary energies compared to other samples, such as a decrease from 0.556 eV (undoped) to 0.195 eV (x = 0.20). Moreover, the dielectric constants of x = 0.20 and 0.40 cobalt-doped samples (around 320) significantly surpassed the undoped sample (around 22) at 10(6) Hz and 100 degrees C. The x = 0.20 cobalt-doped sample demonstrated the highest conductivity at 100 degrees C and 10(6) Hz (31 x 10(-4) S/cm). FT-IR analysis provided insights into vibration and bending modes, and frequency- and temperature-dependent electrical features were investigated. It was observed that a single conduction model is insufficient to fully explain the conduction mechanism in these samples.Öğe High resistivity and low dielectric loss of LuFe1-xOsxO3 (x=0.0-0.10) ferrites(Springer, 2023) Coskun, M.; Polat, Ozgur; Yildirim, Y.; Durmus, Z.; Sen, C.; Caglar, Y.; Caglar, M.LuFe1-xOsxO3 (x = 0, 0.05, and 0.10) compounds were synthesized and their resistivity, real and imaginary portion of the impedance and frequency-dependent loss tangent were examined at varied temperature settings (from - 100 degrees C to 100 degrees C by 20 degrees C step). Impedance and resistivity values increased as a result of the doping procedure, whereas activation and loss tangent values decreased. According to the X-ray photoelectron spectroscopy (XPS) study, Lu possesses a 3 + oxidation state, and the oxygen 1s spectrum displayed peaks for lattice oxygen and oxygen vacancy. Particle agglomeration and void formation were visible in scanning electron microscopy (SEM) pictures. Single and double oxygen vacancies and ion hopping between Fe2+ and Fe3+ ions were responsible for the reported activation energies. The frequency-dependent loss tangent results showed that all compounds have a highly low loss factor even at 100 degrees C.Öğe The structural studies and optical characteristics of phase-segregated Ir-doped LuFeO3-? films(Springer Heidelberg, 2023) Polat, O.; Coskun, F. M.; Yildirim, Y.; Sobola, D.; Ercelik, M.; Arikan, M.; Coskun, M.In this work, we carefully examined how Ir substitution into Fe sites can change the band of the LuFeO3 (LFO) material. LFO and Ir-doped LFO (LuFe1-xIrxO3 or LFIO for short, where x = 0.05 and 0.10) thin films were synthesized by utilizing magnetron sputtering techniques. The films were grown on silicon and indium tin oxide (ITO) substrates at 500 degrees C. The crystallographic orientation of the films was examined using X-ray diffraction (XRD) analysis. The crystallographic orientation of the thin films was examined using an X-ray diffractometer (XRD). For surface topography research, atomic force microscopy (AFM) was employed. To look for the recombination of photogenerated electron-hole pairs in the materials under investigation, photoluminescence (PL) spectroscopy was used. Raman spectroscopy is then utilized to gather data on crystal symmetry as well as disorders and defects in the oxide materials. It was demonstrated that the LFO band gap was altered from 2.35 to 2.72 eV by Ir substitution into Fe sites. Moreover, diffuse reflectance spectroscopy (DRS) was used to analyze conductivity, real and imaginary components of the dielectric constant, refractive index (n), extinction coefficient (k), and reflectance percentage.Öğe Variation in the dielectric and magnetic characteristics of multiferroic LuFeO3 as a result of cobalt substitution at Fe sites(Elsevier Science Sa, 2023) Polat, O.; Coskun, M.; Yildirim, Y.; Roupcova, P.; Sobola, D.; Sen, C.; Durmus, Z.Due to its electrical, magnetic, and optical characteristics, LuFeO3 (LFO) has caught the scientific community's interest. In this study, the powders of LFO, LuFe0.95Co0.05O3, and LuFe0.90Co0.10O3 samples were prepared by using the well-known solid-state approach. The crystalline structure of the fabricated samples was examined by an X-ray diffractometer (XRD). It was found that the samples display secondary phases such as Lu2O3, Lutetium Tetraoxodiferrate, and Wustite. It was shown by scanning electron microscope (SEM) that particle size decreases with Co doping. X-ray photoelectron spectroscopy (XPS) determined oxidation states for Fe and Co. It was presented that Fe has a mixture of 2 + and + 3 valance states in the LFO sample. Although LuFe0.95Co0.05O3 has only the 3 + state, LuFe0.90Co0.10O3 sample has coexisting metallic and 3 + states. The conductivity and dielectric constant of the undoped LFO sample were higher than those of Co doped LFO samples. A decrease in both the dielectric constant and conductivity was associated with a lack of Fe2+ ions and lattice distortions. Furthermore, it was argued that several conduction models must be developed to explain the conduction process in the analyzed samples. Magnetic experiments using a vibrating sample magnetometer (VSM) revealed that Co doping raises Mr values. We discuss that this increase in Mr values could be related to i) variations in the inclined angles of Fe3+ moments and ii) the growth of magnetocrystalline anisotropy's energy.