Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Hakkında
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Afacan, E." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    From Image to Simulation: An ANN-based Automatic Circuit Netlist Generator (Img2Sim)
    (Institute of Electrical and Electronics Engineers Inc., 2022) Sertdemir, A.E.; Besenk, M.; Dalyan, T.; Gokdel, Y.D.; Afacan, E.
    This study proposes an Artificial Neural Network (ANN) based netlist generator: Img2Sim. The tool acquires an image of an electronic circuit, classifies the existing circuit elements, including active components (MOSFET, BJT, Op-Amp, etc.), with at least 98% accuracy, and decides the circuit topology and the connections with over 90% accuracy through a rule-based algorithm. Finally, it automatically yields a simulation-ready netlist for the circuit of concern. It is worth noting that some CAD tools have been developed before; however, they have mostly focused on recognizing the circuit elements only and, to our best knowledge, Img2Sim is the first CAD tool that creates the entire netlist for a given circuit in image format. © 2022 IEEE.
  • Küçük Resim Yok
    Öğe
    Img2Sim-V2: A CAD Tool for User-Independent Simulation of Circuits in Image Format
    (Institute of Electrical and Electronics Engineers Inc., 2023) Gurbuz, H.B.; Balta, A.; Dalyan, T.; Gokdel, Y.D.; Afacan, E.
    Composition of the simulation-ready representations of circuits may be laborius and also vulnerable to human-induced errors, which results in wasted effort before the design process. Artificial intelligence (AI)-aided approaches are used in various applications to minimize the human error, and automatize the Netlist generation process. In literature, presented studies are mostly focused on the recognition of circuit components. In the previous version of Img2Sim, both active and passive components can be detected with 90% accuracy while the netlist for a given circuit can be generated automatically. In this study, we propose Img2Sim-V2, which is an AI assisted mobile application that provides high detection accuracy for hand or computer-drawn electrical circuits, generates related circuit netlist and produces a circuit schematic. Additionally, proposed system performs basic electrical analyses (DC, AC, and Transient) through Python packages. © 2023 IEEE.

| İstanbul Bilgi Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Eski Silahtarağa Elektrik Santralı, Eyüpsultan, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Hakkında
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim