Yazar "Aad, G." seçeneğine göre listele
Listeleniyor 1 - 20 / 100
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A search for an unexpected asymmetry in the production of e+?- and e-?+ pairs in proton-proton collisions recorded by the ATLAS detector at ?s=13 TeV(Elsevier, 2022) Aad, G.; Abbott, B.; Abbott, D. C.; Abud, A. Abed; Abeling, K.; Abhayasinghe, D. K.; Çetin, Serkant AliThis search, a type not previously performed at ATLAS, uses a comparison of the production cross sections for e(+)mu(-) and e(-)mu(+) pairs to constrain physics processes beyond the Standard Model. It uses 139 fb(-1) of proton-proton collision data recorded at root s = 13 TeV at the LHC. Targeting sources of new physics which prefer final states containing e(+)mu(-) and e(-)mu(+), the search contains two broad signal regions which are used to provide model-independent constraints on the ratio of cross sections at the 2% level. The search also has two special selections targeting supersymmetric models and leptoquark signatures. Observations using one of these selections are able to exclude, at 95% confidence level, singly produced smuons with masses up to 640 GeV in a model in which the only other light sparticle is a neutralino when the R-parity-violating coupling lambda(23)(1)' is close to unity. Observations using the other selection exclude scalar leptoquarks with masses below 1880 GeV when g(1R)(eu) = g(1R)(mu c) = 1, at 95% confidence level. The limit on the coupling reduces to g(1R)(eu) = g(1R)(mu c) = 0.46 for a mass of 1420 GeV. (C) 2022 The Author(s). Published by Elsevier B.V.Öğe A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector(Elsevier, 2021) Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abhayasinghe, D. K.; Çetin, Serkant AliA search for the dimuon decay of the Standard Model (SM) Higgs boson is performed using data corresponding to an integrated luminosity of 139 fb(-1) collected with the ATLAS detector in Run 2 pp collisions at root s = 13 TeV at the Large Hadron Collider. The observed (expected) significance over the background-only hypothesis for a Higgs boson with a mass of 125.09 GeV is 2.0 sigma (1.7 sigma). The observed upper limit on the cross section times branching ratio for pp -> H -> mu mu is 2.2 times the SM prediction at 95% confidence level, while the expected limit on a H -> mu mu signal assuming the absence (presence) of a SM signal is 1.1(2.0). The best-fit value of the signal strength parameter, defined as the ratio of the observed signal yield to the one expected in the SM, is mu = 1.2 +/- 0.6. (C) 2020 The Author(s). Published by Elsevier B.V.Öğe ATLAS Collaboration [2-s2.0-84935900043](Elsevier B.V., 2017) Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Çetin, Serkant Ali[No abstract available]Öğe ATLAS Collaboration [2-s2.0-85060096696](Elsevier B.V., 2019) Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abhayasinghe, D.K.; Çetin, Serkant Ali[No abstract available]Öğe The ATLAS Fast TracKer system(Iop Publishing Ltd, 2021) Aad, G.; Abbott, B.; Abbott, D. C.; Abud, A. Abed; Abeling, K.; Abhayasinghe, D. K.; Çetin, Serkant AliThe ATLAS Fast TracKer (FTK) was designed to provide full tracking for the ATLAS high-level trigger by using pattern recognition based on Associative Memory (AM) chips and fitting in high-speed field programmable gate arrays. The tracks found by the FTK are based on inputs from all modules of the pixel and silicon microstrip trackers. The as-built FTK system and components are described, as is the online software used to control them while running in the ATLAS data acquisition system. Also described is the simulation of the FTK hardware and the optimization of the AM pattern banks. An optimization for long-lived particles with large impact parameter values is included. A test of the FTK system with the data playback facility that allowed the FTK to be commissioned during the shutdown between Run 2 and Run 3 of the LHC is reported. The resulting tracks from part of the FTK system covering a limited eta-phi region of the detector are compared with the output from the FTK simulation. It is shown that FTK performance is in good agreement with the simulation.Öğe Charged-hadron production in pp, p plus Pb, Pb plus Pb, and Xe plus Xe collisions at ?sNN=5 TeV with the ATLAS detector at the LHC(Springer, 2023) Aad, G.; Abbott, B.; Abbott, D. C.; Abud, A. Abed; Abeling, K.; Abhayasinghe, D. K.; Çetin, Serkant AliThis paper presents measurements of charged-hadron spectra obtained in pp, p+Pb, and Pb+Pb collisions at root s or root s(NN) = 5.02TeV, and in Xe+Xe collisions at root s(NN) = 5.44TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb(-1), 28 nb(-1), 0.50 nb(-1), and 3 mu b(-1), respectively. The nuclear modification factors RpPb and R-AA are obtained by comparing the spectra in heavy-ion and pp collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor RpPb shows a moderate enhancement above unity with a maximum at p(T) approximate to 3 GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct p(T)-dependence with a local maximum at p(T) approximate to 2 GeV and a local minimum at p(T) approximate to 7 GeV. This dependence is more distinguishable in more central collisions. No significant eta |-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe RAA better in central collisions and in the pT range from about 10 to 100 GeV.Öğe Configuration and performance of the ATLAS b-jet triggers in Run 2(Springer, 2021) Aad, G.; Abbott, B.; Abbott, D. C.; Abed Abud, A.; Abeling, K.; Abhayasinghe, D. K.; Çetin, Serkant AliSeveral improvements to the ATLAS triggers used to identify jets containing b-hadrons (b-jets) were implemented for data-taking during Run 2 of the Large Hadron Collider from 2016 to 2018. These changes include reconfiguring the b-jet trigger software to improve primary-vertex finding and allow more stable running in conditions with high pile-up, and the implementation of the functionality needed to run sophisticated taggers used by the offline reconstruction in an online environment. These improvements yielded an order of magnitude better light-flavour jet rejection for the same b-jet identification efficiency compared to the performance in Run 1 (2011-2012). The efficiency to identify b-jets in the trigger, and the conditional efficiency for b-jets that satisfy offline b-tagging requirements to pass the trigger are also measured. Correction factors are derived to calibrate the b-tagging efficiency in simulation to match that observed in data. The associated systematic uncertainties are substantially smaller than in previous measurements. In addition, b-jet triggers were operated for the first time during heavy-ion data-taking, using dedicated triggers that were developed to identify semileptonic b-hadron decays by selecting events with geometrically overlapping muons and jets.Öğe Determination of the parton distribution functions of the proton from ATLAS measurements of differential W± and Z boson production in association with jets(Springer, 2021) Aad, G.; Abbott, B.; Abbott, D. C.; Abed Abud, A.; Abeling, K.; Abhayasinghe, D. K.; Çetin, Serkant AliThis article presents a new set of proton parton distribution functions, AT-LASepWZVjet20, produced in an analysis at next-to-next-to-leading order in QCD. The new data sets considered are the measurements of W+ and W- boson and Z boson production in association with jets in pp collisions at root s = 8TeV performed by the ATLAS experiment at the LHC with integrated luminosities of 20.2 fb(-1) and 19.9 fb(-1), respectively. The analysis also considers the ATLAS measurements of differential W-+/- and Z boson production at root s = 7 TeV with an integrated luminosity of 4.6 fb(-1) and deep-inelastic-scattering data from e(+/-) p collisions at the HERA accelerator. An improved determination of the sea-quark densities at high Bjorken x is shown, while confirming a strange-quark density similar in size to the up- and down-sea-quark densities in the range x less than or similar to 0.02 found by previous ATLAS analyses.Öğe Differential cross-section measurements for the electroweak production of dijets in association with a Z boson in proton-proton collisions at ATLAS(Springer, 2021) Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abhayasinghe, D. K.; Çetin, Serkant AliDifferential cross-sectionmeasurements are presented for the electroweak production of two jets in association with a Z boson. These measurements are sensitive to the vector-boson fusion production mechanism and provide a fundamental test of the gauge structure of the Standard Model. The analysis is performed using proton-proton collision data collected by ATLAS at root s = 13 TeV and with an integrated luminosity of 139 fb(-1). The differential cross-sections are measured in the Z -> l(+)l(-) decay channel (l = e, mu) as a function of four observables: the dijet invariant mass, the rapidity interval spanned by the two jets, the signed azimuthal angle between the two jets, and the transverse momentum of the dilepton pair. The data are corrected for the effects of detector inefficiency and resolution and are sufficiently precise to distinguish between different state-of-the-art theoretical predictions calculated using Powheg+Pythia8, Herwig7+Vbfnlo and Sherpa 2.2. The differential cross-sections are used to search for anomalous weak-boson self-interactions using a dimension-six effective field theory. Themeasurement of the signed azimuthal angle between the two jets is found to be particularly sensitive to the interference between the Standard-Model and dimension-six scattering amplitudes and provides a direct test of charge-conjugation and parity invariance in the weak-boson self-interactions.Öğe Differential tt¯ cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb?1 of ATLAS data(Springer Science and Business Media Deutschland GmbH, 2023) Aad, G.; Abbott, B.; Abbott, D.C.; Abed Abud, A.; Abeling, K.; Abhayasinghe, D.K.; Çetin, Serkant AliMeasurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 TeV proton–proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum (pT) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the tt¯ ? WWbb¯ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have pT> 500 GeV and pT> 350 GeV, respectively, is 331 ± 3(stat.) ± 39(syst.) fb. This is approximately 20% lower than the prediction of 398?49+48 fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is 1.94 ± 0.02(stat.) ± 0.25(syst.) pb. This agrees with the NNLO prediction of 1.96?0.17+0.02 pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators. [Figure not available: see fulltext.]. © 2023, The Author(s).Öğe Erratum to: Search for the HH ? bb¯ bb¯ process via vector-boson fusion production using proton-proton collisions at s = 13 TeV with the ATLAS detector (Journal of High Energy Physics, (2020), 2020, 7, (108), 10.1007/JHEP07(2020)108) [2-s2.0-85107338252](Springer Science and Business Media Deutschland GmbH, 2021) Aad, G.; Abbott, B.; Abbott, D.C.; Abed Abud, A.; Abeling, K.; Abhayasinghe, D.K.; Çetin, Serkant AliOne correction is noted for the paper. © 2021, The Author(s).Öğe Erratum: Measurement of the tt? production cross-section using e? events with b-tagged jets in pp collisions at ?s = 13 TeV with the ATLAS detector (Physics Letters B (2016) 761 (136-157) PII: S0370269316304397 DOI: 10.1016/j.physletb.2016.08.019)(Elsevier B.V., 2017) Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Çetin, Serkant AliThis paper describes a measurement of the inclusive top quark pair production cross-section (?tt¯) with a data sample of 3.2 fb?1 of proton–proton collisions at a centre-of-mass energy of s=13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously ?tt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: ?tt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented. © 2017Öğe Evidence for Higgs boson decays to a low-mass dilepton system and a photon in pp collisions at ?s=13 TeV with the ATLAS detector(Elsevier, 2021) Aad, G.; Abbott, B.; Abbott, D. C.; Abud, A. Abed; Abeling, K.; Abhayasinghe, D. K.; Çetin, Serkant AliA search for the Higgs boson decaying into a photon and a pair of electrons or muons with an invariant mass m(ll) < 30 GeV is presented. The analysis is performed using 139 fb(-1) of proton-proton collision data, produced by the LHC at a centre-of-mass energy of 13 TeV and collected by the ATLAS experiment. Evidence for the H -> ll(gamma) process is found with a significance of 3.2 over the background-only hypothesis, compared to an expected significance of 2.1 for the Standard Model prediction. The best-fit value of the signal-strength parameter, defined as the ratio of the observed signal yield to the one expected in the Standard Model, is mu = 1.5 +/- 0.5. The Higgs boson production cross-section times the H -> ll(gamma) branching ratio for m(ll) < 30 GeV is determined to be 8.7(-2.7)(+2.8) fb. (C) 2021 The Author. Published by Elsevier B.V.Öğe Exclusive dimuon production in ultraperipheral Pb plus Pb collisions at ?SNN=5.02 TeV with ATLAS(Amer Physical Soc, 2021) Aad, G.; Abbott, B.; Abbott, D. C.; Abud, A. Abed; Abeling, K.; Abhayasinghe, D. K.; Çetin, Serkant AliExclusive dimuon production in ultraperipheral collisions (UPC), resulting from photon-photon interactions in the strong electromagnetic fields of colliding high-energy lead nuclei, PbPb(gamma gamma) -> mu(+) mu(-) (Pb-(*Pb-)(()*())), is studied using L-int = 0.48 nb(-1) of root S-NN = 5.02 TeV lead-lead collision data at the LHC with the ATLAS detector. Dimuon pairs are measured in the fiducial region p(T,mu) > 4 GeV, vertical bar eta(mu)vertical bar < 2.4, invariant m(mu mu) > 10 GeV, and p(T,mu mu) <2 GeV. The primary background from single-dissociative processes is extracted from the data using a template fitting technique. Differential cross sections are presented as a function of m(mu mu), absolute pair rapidity (vertical bar y(mu mu)vertical bar), scattering angle in the dimuon rest frame (vertical bar cos v*(mu mu)vertical bar), and the colliding photon energies. The total cross section of the UPC gamma gamma -> mu(+) mu(-) process in the fiducial volume is measured to be sigma(mu mu)(fid) = 34.1 +0.3(stat.)+0.7(syst.) mu b. Generally good agreement is found with calculations from STARlight, which incorporate the leading-order Breit-Wheeler process with no final-state effects, albeit differences between the measurements and theoretical expectations are observed. In particular, the measured cross sections at larger vertical bar y(mu mu)vertical bar are found to be about 10-20% larger in data than in the calculations, suggesting the presence of larger fluxes of photons in the initial state. Modification of the dimuon cross sections in the presence of forward and/or backward neutron production is also studied and is found to be associated with a harder incoming photon spectrum, consistent with expectations.Öğe Higgs boson production cross-section measurements vand their EFT interpretation in the 4l decay channel at ?s = 13 TeV with the ATLAS detector (vol 80, 957, 2020)(Springer, 2021) Aad, G.; Abbott, B.; Abbott, D. C.; Abud, A. Abed; Abeling, K.; Abhayasinghe, D. K.; Çetin, Serkant Ali[Abstract Not Available]Öğe Higgs boson production cross-section measurements vand their EFT interpretation in the 4l decay channel at ?s =13 TeV with the ATLAS detector (vol 80, 10.1140/epjc/s10052-020-8227-9, 2020)(Springer, 2021) Aad, G.; Abbott, B.; Abbott, D. C.; Abud, A. Abed; Abeling, K.; Abhayasinghe, D. K.; Çetin, Serkant Ali[Abstract Not Available]Öğe Identification and rejection of pile-up jets at high pseudorapidity with the ATLAS detector (vol 77, 580, 2017)(Springer, 2017) Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Çetin, Serkant Ali[Abstract Not Available]Öğe Jet energy scale and resolution measured in proton-proton collisions at s=13 TeV with the ATLAS detector(Springer, 2021) Aad, G.; Abbott, B.; Abbott, D. C.; Abud, A. Abed; Abeling, K.; Abhayasinghe, D. K.; Çetin, Serkant AliJet energy scale and resolution measurements with their associated uncertainties are reported for jets using 36-81 fb-1 of proton-proton collision data with a centre-of-mass energy of s=13 TeV collected by the ATLAS detector at the LHC. Jets are reconstructed using two different input types: topo-clusters formed from energy deposits in calorimeter cells, as well as an algorithmic combination of charged-particle tracks with those topo-clusters, referred to as the ATLAS particle-flow reconstruction method. The anti-kt jet algorithm with radius parameter R=0.4 is the primary jet definition used for both jet types. This result presents new jet energy scale and resolution measurements in the high pile-up conditions of late LHC Run 2 as well as a full calibration of particle-flow jets in ATLAS. Jets are initially calibrated using a sequence of simulation-based corrections. Next, several in situ techniques are employed to correct for differences between data and simulation and to measure the resolution of jets. The systematic uncertainties in the jet energy scale for central jets (|eta|<1.2) vary from 1% for a wide range of high-pT jets (250<2000 GeV), to 5% at very low pT (20 GeV) and 3.5% at very high pT (>2.5 TeV). The relative jet energy resolution is measured and ranges from (24 +/- 1.5)% at 20 GeV to (6 +/- 0.5)% at 300 GeV.Öğe Longitudinal Flow Decorrelations in Xe plus Xe Collisions at ?sNN =5.44 TeV with the ATLAS Detector(Amer Physical Soc, 2021) Aad, G.; Abbott, B.; Abbott, D. C.; Abud, A. Abed; Abeling, K.; Abhayasinghe, D. K.; Çetin, Serkant AliThe first measurement of longitudinal decorrelations of harmonic flow amplitudes v(n) for n = 2-4 in Xe + Xe collisions at root s(NN) = 5.44 TeV is obtained using 3 mu b(-1) of data with the ATLAS detector at the LHC. The decorrelation signal for v(3) and v(4) is found to be nearly independent of collision centrality and transverse momentum (p(T)) requirements on fmal-state particles, but for v(2) a strong centrality and p(T) dependence is seen. When compared with the results from Pb + Pb collisions at. root s(NN) = 5.02 TcV, the longitudinal decorrelation signal in midcentral Xe + Xe collisions is found to be larger for v(2), but smaller for v(3). Current hydrodynamic models reproduce the ratios of the v(n) measured in Xe + Xe collisions to those in Pb + Pb collisions but fail to describe the magnitudes and trends of the ratios of longitudinal flow decorrelations between Xe + Xe and Pb + Pb. The results on the system-size dependence provide new insights and an important lever arm to separate effects of the longitudinal structure of the initial state from other early and late time effects in heavy-ion collisions.Öğe Measurement of b-quark fragmentation properties in jets using the decay B± ? J/?K± in pp collisions at ?s=13 TeV with the ATLAS detector(Springer, 2021) Aad, G.; Abbott, B.; Abbott, D. C.; Abud, A. Abed; Abeling, K.; Abhayasinghe, D. K.; Çetin, Serkant AliThe fragmentation properties of jets containing b-hadrons are studied using charged B mesons in 139fb(-1) of pp collisions at root s = 13 TeV, recorded with the ATLAS detector at the LHC during the period from 2015 to 2018. The B mesons are reconstructed using the decay of B-+/- into J/psi K-+/-, with the J/psi decaying into a pair of muons. Jets are reconstructed using the anti-k(t) algorithm with radius parameter R = 0.4. The measurement determines the longitudinal and transverse momentum profiles of the reconstructed B hadrons with respect to the axes of the jets to which they are geometrically associated. These distributions are measured in intervals of the jet transverse momentum, ranging from 50 GeV to above 100 GeV. The results are corrected for detector effects and compared with several Monte Carlo predictions using different parton shower and hadronisation models. The results for the longitudinal and transverse profiles provide useful inputs to improve the description of heavy-flavour fragmentation in jets.