Sönmez, Elena Battini2022-10-112022-10-112022-091319-1578https://hdl.handle.net/11411/4561https://doi.org/10.1016/j.jksuci.2021.07.005Abstract: The Coronavirus disease is quickly spreading all over the world and the emergency situation is still out of control. Latest achievements of deep learning algorithms suggest the use of deep Convolutional Neural Network to implement a computer-aided diagnostic system for automatic classification of COVID-19 CT images. In this paper, we propose to employ a feature-wise attention layer in order to enhance the discriminative features obtained by convolutional networks. Moreover, the original performance of the network has been improved using the mixup data augmentation technique. This work compares the proposed attention-based model against the stacked attention networks, and traditional versus mixup data augmentation approaches. We deduced that feature-wise attention extension, while outperforming the stacked attention variants, achieves remarkable improvements over the baseline convolutional neural networks. That is, ResNet50 architecture extended with a feature-wise attention layer obtained 95.57% accuracy score, which, to best of our knowledge, fixes the state-of-the-art in the challenging COVID-CT dataset. © 2021 The Authorseninfo:eu-repo/semantics/openAccessAttentionClassificationComputed Tomography (CT) imagesCOVID-19Data augmentationMixupAttention mechanism and mixup data augmentation for classification of COVID-19 Computed Tomography imagesArticle2-s2.0-8511152569910.1016/j.jksuci.2021.07.00538620953Q1WOS:000862930600018